教育大白话
关注高考,关注大学,关注就业,关注教育新事态
发布时间: 2024年11月25日 13:46
只有一个二元一次方程的时候有无穷解.两个二元一次方程组合在一起为方程组.消元方法“消元”是解二元一次方程的基本思路.所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数.这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法.消元方法一般分为:代入消元法,简称:代入法(常用)加减消元法,简称:加减法(常用)顺序消元法,(这种方法不常用)整体代入法.(不常用)以下是消元方法的举例:{x-y=3 ①{3x-8y=4②由①得x=y+3③③代入②得3(y+3)-8y=4解得y=1所以x=4,则:这个二元一次方程组的解为{x=4{y=1实用方法{13x+14y=41{14x+13y=4027x+27y=81y-x=127y=54y=2x=1y=2把y=2代入(3)得即x=1所以:x=1,y=2最后 x=1 ,y=2,解出来特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法是二元一次方程的另一种方法,就是说把一个方程用其他未知数表示,再带入另一个方程中如:x+y=590y+20=90%x代入后就是:x+90%x-20=590例2:(x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因.(三)参数换元例3,x:y=1:45x+6y=29令x=t,y=4t方程2可写为:5t+24t=2929t=29t=1所以x=1,y=4此外,还有代入法可做题.x+y=53x+7y=-1x=5-y3(5-y)+7y=-115-3y+7y=-14y=-16y=-4得:x=9y=-4如果关于x,y的二元一次方程组3x-ay=16,的解是x=7你是否可以通过观察、研究,用简便方法求出下列关于2x+by=15 y=1x,y的方程组的解 (1)方程组:3(x+y)-a(x-y)=16①2(x+y)+b(x-y)=15②(2)方程组:3(x-2y)÷2-a÷3y=16①(x-2y)+b÷3y=15②