培训啦 精选问答

怎样证明,四条边都相等的四边形是菱形

精选回答

[思路分析]要证AMNE是菱形,可以根据定义,证得它是平行四边形,并且有一组邻边相等,也可以根据判定定理,证它四边相等;或证两条对角线互相垂直平分,注意到AN是∠DAC的平分线,只要证AM=AE,则AN垂直平分ME,若证AN⊥ME,则再由BE平分∠ABN易知BE也垂直平分AN,即AN与ME互相垂直平分,故有AM=MN=NE=AE,即AMNE是菱形,此为证法一.显然,在上述证法中,证得BE垂直平分AN后,可得AM=MN,所以∠MNA=∠MAN=∠NAE,所以MN AE,则AMNE是平行四边形,又AM=MN所以AMNE是菱形.[解题过程]因为∠BAC=90°,AD⊥BC,所以∠BAD=∠C因为BE平分∠ABC,所以∠ABE=∠EBC.因为∠AME=∠BAD+∠ABE=∠C+∠EBC=∠AEM,所以AM=AE,又因为AN平分∠DAC,所以AM=MN,所以AM=MN=NE=AE.所以AMNE是菱形.证法二:同上,若证AN垂直平分ME,再证BE垂直平分AN,则AM=MN,所以∠MNA=∠MNA=∠NAE.所以MN AE.所以AMNE是平行四边形,由AM=MN得AMNE是菱形.

985大学 211大学 全国院校对比 专升本 美国留学 留求艺网

温馨提示:
本答案【怎样证明,四条边都相等的四边形是菱形】由作者考研那些事儿提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号 美国留学 留求艺