培训啦 考试问答 > 考研数学

2024年考研数学线性代数总结复习四部曲

发布时间: 2024-11-14 12:26

目前已经到了九月,考研数学的复习应该复习完成二轮了,很多同学只注重高数的复习,对其他两科的重视度不够,这样的情况下其他两科知识点很可能给你拉分,不能忽视考研数学线代与概率的复习,小编整理了2020年考研数学线性代数总结复习四部曲的文章,希望对大家有所帮助。

1.掌握基本概念

在线代中,定义特别重要,定义往往是掌握原理的出发点的,例如线性相关无关,矩阵的关系中等价,相似,合同等。把这些说法用数学语言严格的表示出来就是定义,然后再分析相互之间有什么联系。考研数学中会出现一些考查说法的选择题,这类题就是专捡那些易混淆部分来考的,命题人可谓是挖空心思,无孔不入,大家可以翻翻历年真题看看就明白了。

线性代数的概念很多,重要的概念有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

2.弄清联系和区别

线性代数内容前后联系紧密,相互渗透,各知识点之间有着千丝万缕的联系,因此解题方法灵活多变。记住知识点不是难事,但要把握好知识点的相互联系,非得下一番功夫不可。

首先要把握定理和公式成立的条件,一定要注意同时把某一知识点对应的适用条件掌握好!再者要弄清知识点之间的纵横联系,另外还有容易混淆的地方,如矩阵的等价和向量组的等价之间的关系,线性相关与线性表示等。掌握它们之间的联系与区别,对大家做线性代数部分的大题也有很大的帮助。

3.建立知识框架

基础阶段线代要大概围绕以下内容建立知识框架,即线性方程组,向量,秩,矩阵运算。建立知识框架,类似于围棋中的布局,要想下好棋,大局观非常重要,这在线性代数尤其重要。

线性代数的学习切入点:线性方程组,线代贯穿的主线就是求方程组的解,换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科,不管是向量的线性相关,线性表示,还是求特征向量,都是围绕线性方程组。关于线性方程组的解,有三个问题值得讨论:(1)方程组是否有解,即解的存在性问题;(2)方程组如何求解,有多少个解;(3)方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。

线性方程组求解主要是高斯消元法,在利用求解的过程中涉及到一种重要的运算,即把某一行的倍数加到另一行上,也就是说,为了研究从线性方程组的系数和常数项判断它有没有解,有多少解的问题,需要定义这样的运算,这提示我们可以把问题转为直接研究这种对n元有序数组的数量乘法和加法运算,即向量。例如大家可以通过一些简单例子体会线性相关和线性无关(零向量一定线性无关、单个非零向量线性无关、单位向量组线性无关等等)。也可以从多个角度(线性组合角度、线性表出角度、齐次线性方程组角度)体会线性相关和线性无关的本质。这部分内容概念多,定理性质也多,光凭记忆是很难掌握的。

秩是一个非常深刻而重要的概念,就可以判断向量组是线性相关还是线性无关,有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组有解的充分必要条件:若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。秩的灵活运用,充分体现了线性代数中推理和抽象性强的特点,同学们在做题时要好好体会,因此有必要进一步好好研究向量组的秩的计算方法。

在研究线性方程组的解的过程当中,同学们注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门研究,建立这方面的知识框架。

4.做题巩固

初步掌握知识点以后要做什么?自然是用于解题了,做题一定要建立在完成知识点的总结的基础上,最好将自己的总结笔记分成两类,一类是知识点笔记,一类是题型思路归纳,这样一来反馈学习效果更明显,思路更清晰。一定要加强训练,做题巩固,并注重逻辑性与叙述表述。

相信大家通过以上复习建议,并不断地归纳总结,初步搞清知识点的内在联系,就能逐步使所学知识融会贯通,这就为强化阶段的进一步学习打下了坚实的基础。

985大学 211大学 全国院校对比 专升本 留求艺网

温馨提示:
本文【2024年考研数学线性代数总结复习四部曲】由作者教培参考提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号 留求艺网