发布时间: 2024年12月27日 04:09
首先可以确定这是个并列句。
第一分句:Inequalities of wealth and rank certainly exist, and have probably existed in most pastoralist societies,
该分句的主语是复数名词Inequalities of wealth and rank(财富和等级的不平等),其中有两个并列谓语:
1、certainly exist
2、haveprobably existed in most pastoralist societies
第二分句:but except in periods of military conquest, they are normally too slight to generate the stable.
该分句是带有介词短语的简单句,they 指代上文的复数名词 Inequalities of wealth and rank
那么,整个句子改写为三个简单句:
Inequalities of wealth and rank certainly exist. 财富和等级的不平等确实存在。
Inequalities of wealth and rank have probably existed in most pastoralist societies. 财富和等级的不平等或许已经在多数理想社会中存在。
Inequalities of wealth and rank are normally too slight to generate the stable except in periods of military conquest. 除了在军事战领期间,财富和等级的不平等一般说来过于微不足道而不足以形成这类稳定的局面。
The inequalities is most marked during periods of military conquest(这些不平等在军事战领期间极为显著)与 they are normally too slight to generate… 以及前面的一句在意思上大相径庭。
究竟正与否,需要看题目的要求。如选择不能表述上文意思的一项,它应该是正确的;反之,则是错误的。
TPO是我们常用的托福模考工具,对我们的备考很有价值,下面我给大家带来托福阅读TPO16(试题+答案+译文)第2篇:Development of the Periodic Table。
托福阅读原文
The periodic table is a chart that reflects the periodic recurrence of chemical and physical properties of the elements when the elements are arranged in order of increasing atomic number (the number of protons in the nucleus). It is a monumental scientific achievement, and its development illustrates the essential interplay between observation, prediction, and testing required for scientific progress. In the 1800's scientists were searching for new elements. By the late 1860's more than 60 chemical elements had been identified, and much was known about their descriptive chemistry. Various proposals were put forth to arrange the elements into groups based on similarities in chemical and physical properties. The next step was to recognize a connection between group properties (physical or chemical similarities) and atomic mass (the measured mass of an individual atom of an element). When the elements known at the time were ordered by increasing atomic mass, it was found that successive elements belonged to different chemical groups and that the order of the groups in this sequence was fixed and repeated itself at regular intervals. Thus when the series of elements was written so as to begin a new horizontal row with each alkali metal, elements of the same groups were automatically assembled in vertical columns in a periodic table of the elements. This table was the forerunner of the modern table.
When the German chemist Lothar Meyer and (independently) the Russian Dmitry Mendeleyev first introduced the periodic table in 1869-70, one-third of the naturally occurring chemical elements had not yet been discovered. Yet both chemists were sufficiently farsighted to leave gaps where their analyses of periodic physical and chemical properties indicated that new elements should be located. Mendeleyev was bolder than Meyer and even assumed that if a measured atomic mass put an element in the wrong place in the table, the atomic mass was wrong. In some cases this was true. Indium, for example, had previously been assigned an atomic mass between those of arsenic and selenium. Because there is no space in the periodic table between these two elements, Mendeleyev suggested that the atomic mass of indium be changed to a completely different value, where it would fill an empty space between cadmium and tin. In fact, subsequent work has shown that in a periodic table, elements should not be ordered strictly by atomic mass. For example, tellurium comes before iodine in the periodic table, even though its atomic mass is slightly greater. Such anomalies are due to the relative abundance of the "isotopes" or varieties of each element. All the isotopes of a given element have the same number of protons, but differ in their number of neutrons, and hence in their atomic mass. The isotopes of a given element have the same chemical properties but slightly different physical properties. We now know that atomic number (the number of protons in the nucleus), not atomic mass number (the number of protons and neutrons), determines chemical behavior.
Mendeleyev went further than Meyer in another respect: he predicted the properties of six elements yet to be discovered. For example, a gap just below aluminum suggested a new element would be found with properties analogous to those of aluminum. Mendeleyev designated this element "eka-aluminum" (eka is the Sanskrit word for "next") and predicted its properties. Just five years later an element with the proper atomic mass was isolated and named gallium by its discoverer. The close correspondence between the observed properties of gallium and Mendeleyev’s predictions for eka-aluminum lent strong support to the periodic law. Additional support came in 1885 when eka-silicon, which had also been described in advance by Mendeleyev, was discovered and named germanium.
The structure of the periodic table appeared to limit the number of possible elements. It was therefore quite surprising when John William Strut (Lord Rayleigh, discovered a gaseous element in 1894 that did not fit into the previous classification scheme. A century earlier, Henry Cavendish had noted the existence of a residual gas when oxygen and nitrogen are removed from air, but its importance had not been realized. Together with William Ramsay, Rayleigh isolated the gas (separating it from other substances into its pure state) and named it argon. Ramsay then studied a gas that was present in natural gas deposits and discovered that it was helium, an element whose presence in the Sun had been noted earlier in the spectrum of sunlight but that had not previously been known on Earth. Rayleigh and Ramsay postulated the existence of a new group of elements, and in 1898 other members of the series (neon, krypton, and xenon) were isolated.
托福阅读试题
1.The phrase interplay in the passage (paragraph 1) is closest in meaning to
A.sequence
B.interpretation
C.requirement
D.interaction
2.According to paragraph 1, what pattern did scientists notice when the known elements were written in order of increasing atomic mass?
A.The elements of the group of alkali metals were the first elements in the order of increasing atomic mass.
B.Repetition of the same atomic masses for elements in different groups appeared.
C.Elements with similar chemical properties appeared in the listing at regular intervals.
D.Elements were chemically most similar to those just before and after them in the order.
3.In paragraph 2, what is the author's purpose in presenting the information about the decision by Meyer and Mendeleyev to leave gaps in the periodic table?
A.To illustrate their confidence that the organizing principles of the periodic table would govern the occurrence of all chemical elements
B.To indicate that some of their analyses of periodic physical and chemical properties were later found to be wrong
C.To support the idea that they were unwilling to place new elements in the periodic table
D.To indicate how they handled their disagreement about where to place new elements
4.What reason does the author provide for the claim that Mendeleyev was bolder than Meyer?(in paragraph 2)
A.Mendeleyev corrected incorrect information Meyer had proposed.
B.Mendeleyev assumed that some information believed to be true about the elements was incorrect.
C.Mendeleyev argued that Meyer had not left enough gaps in the periodic table.
D.Mendeleyev realized that elements were not ordered by atomic mass in the periodic table.
5.According to paragraph 2, why did Mendeleyev suggest changing the atomic mass of indium?
A.Because indium did not fit into the periodic table in the place predicted by its atomic mass.
B.Because there was experimental evidence that the atomic mass that had been assigned to indium was incorrect.
C.Because there was an empty space between cadmium and tin in the periodic table.
D.Because the chemical properties of indium were similar to those of arsenic and selenium.
6.It can be inferred from paragraph 2 that tellurium comes before iodine in the periodic table even though tellurium's atomic mass is slightly greater because
A.iodine is less common than tellurium
B.both iodine and tellurium have no isotopes
C.the chemical behavior of tellurium is highly variable
D.the atomic number of tellurium is smaller than that of iodine
7.The phrase “abundance” in the passage (paragraph 2) is closest in meaning to
A.weight
B.requirement
C.plenty
D.sequence
8.The phrase “analogous to” in the passage (paragraph 3) is closest in meaning to
A.predicted by
B.expected of
C.similar to
D.superior to
9.Paragraph 3 suggests that Mendeleyev predicted the properties of eka-aluminum on the basis of
A.the atomic mass of aluminum
B.the position of the gap in the periodic table that eka-aluminum was predicted to fill
C.the similarity of eka-aluminum to the other five missing elements
D.observation of the properties of gallium
10.It can be inferred from paragraph 3 that the significance of the discovery of gallium was that it supported which of the following?
A.The idea that aluminum was correctly placed in the periodic table.
B.Mendeleyev's prediction that eka-silicon would be discovered next.
C.The organizing principle of the periodic table.
D.The idea that unknown elements existed.
11.Which of the sentences below best expresses the essential information in the highlighted sentence in the passage (paragraph 4)? Incorrect choices change the meaning in important ways or leave out essential information.
A.Ramsay found evidence of helium in the spectrum of sunlight before he discovered that the element was also contained in natural gas deposits on Earth.
B.Ramsay thought he had discovered a new element present in natural gas deposits, but he was wrong since that element had been previously observed elsewhere on Earth.
C.After Ramsay had discovered a new element, called helium, in natural gas deposits on Earth, he also found evidence of its presence in the Sun.
D.Ramsay later discovered that helium, an element that was already known to be present in the Sun, was also present in natural gas deposits on Earth.
12.The word “postulated” in the passage (paragraph 4) is closest in meaning to
A.hypothesized
B.discovered
C.reported
D.generated
13. Look at the four squares [■] that indicate where the following sentence could be added to the passage. Where would the sentence best fit? It was a natural Idea to break up the series of elements at the points where the sequence of chemical groups to which the elements belonged began to repeat itself.
Paragraph1: The periodic table is a chart that reflects the periodic recurrence of chemical and physical properties of the elements when the elements are arranged in order of increasing atomic number (the number of protons in the nucleus). It is a monumental scientific achievement, and its development illustrates the essential interplay between observation, prediction, and testing required for scientific progress. In the 1800's scientists were searching for new elements. By the late 1860's more than 60 chemical elements had been identified, and much was known about their descriptive chemistry. Various proposals were put forth to arrange the elements into groups based on similarities in chemical and physical properties. ■【A】The next step was to recognize a connection between group properties (physical or chemical similarities) and atomic mass (the measured mass of an individual atom of an element). ■【B】When the elements known at the time were ordered by increasing atomic mass, it was found that successive elements belonged to different chemical groups and that the order of the groups in this sequence was fixed and repeated itself at regular intervals. ■【C】Thus when the series of elements was written so as to begin a new horizontal row with each alkali metal, elements of the same groups were automatically assembled in vertical columns in a periodic table of the elements. ■【D】This table was the forerunner of the modern table.
14. Directions: An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some sentences do not belong in the summary because they express ideas that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points.
The periodic table introduced by Meyer and Mendeleyev was the forerunner of the modern table of elements.
A.Lord Rayleigh provided evidence that the structure of the I—Ramsay and Lord Rayleigh challenged the importance of the periodic table limited the potential number of elements.
B.Chemical research that Henry Cavendish had done a century earlier.
C.Isotopes of a given element have exactly the same physical properties, but their chemical properties are slightly different.
D. Mendeleyev and Meyer organized the known elements into a F chart that revealed periodic recurrences of chemical and physical properties.
E.Mendeleyev's successful prediction of the properties of then- r unknown elements lent support to the acceptance of the periodic law.
F.In the 1890's, Ramsay and Lord Rayleigh isolated argon and proposed the existence of a new series of elements.
托福 阅读答案
1.interplay相互作用,所以D的interaction正确。从单词本身看,inter表示在……之间,play是起到什么什么作用,所以interplay是相互作用。原句说观察、预测与实验相互作用,所以答案是interaction,A顺序B解释C要求都错。
2.以increasing atomic mass做关键词定位至倒数第三句,说把元素按照原子量增加的顺序排布,发现相邻元素属于不同的族,族的顺序是固定的,每隔固定数量的元素会重现。所以正确答案是C。A的alkali metals,B的same atomic mass原文都没说;D说相邻元素性质相近与原文相反。
3.修辞目的题,先找到两个人名,说两个人都非常有远见,在周期表中给没发现的元素留了空隙,也就是A说的他们足够自信认为元素周期律适用于所有元素;B的wrong和C的unwilling都跟原文说反;D的disagreement原文没说。
4.修辞目的题,先找到两个人名,说门捷列夫比梅伊尔更胆儿大,他推测如果用来在周期表中排序的原子量与元素周期律互相冲突的时候,就说明原子量错了,也就是选项B说的门捷列夫认为以前被大家所认识到的一些东西是错的。两个人的意见是一样的,只是门捷列夫更进一步,所以A和C说两者的意见有差异不对;D说不是按原子量排序的错。
5.以changing the atomic mass of indium做关键词定位至第六句,说由于元素周期表中砷和硒之间没有空位,所以铟的原子量是错的。因为前面说如果原子量把元素放错了位置,就说明原子量是错的,后一句是为了证明这个观点的,所以答案是A。B的experimental evidence和D的化学性质相似原文都没说;C有space与原文相反。
6.以tellerium coms before iodine做关键词定位至倒数第五句for example处,但这句话只是一个例子,所以往前看,说元素不应该严格按照原子量排列,而且最后一句又说决定元素化学性质的是原子序数,不是原子量,也就是应该按照原序数量排列,所以答案D正确。A谁common谁不common,B有没有同位素还有C的化学性质多变没有信息能推出。
7.abundance丰度,答案是plenty。原句说这种异常,也就是尽管原子量大却排在前面这种异常是由于同位素的什么,然后后面就解释每种同位素的原子序数相同,但中子数不同,导致原子量不同,猜到每种同位素的多少不同,所以答案plenty,B要求D顺序明显不对;A重量不同原文已经直接说了不用再说一遍。
8.analogous to可类比的,相似的,所以答案similar to正确。原句说铝元素之下的空格表明一个性质与铝怎么样的元素的存在,前文都说了相邻的元素属于不同的族,而且族会相隔固定数目的元素出现,而且根据常识也知道元素周期表中上下两元素性质相似,所以答案是similar。A实现预测的是人,不是铝元素的性质;B期待不靠谱;D谁比谁好原文没说。
9.以eka-aluminum做关键词定位至第三句,但这句话只说了预测了eka的性质,没说根据什么预测的,看上一句,说eka是铝之下的那个空格里的元素,而且跟铝性质相似,所以答案是B,eka要填的那个空格。A铝的原子量C另外五个没发现的元素D的gallium原文都没说。
10.gallium做关键词定位至倒数第三句,但这句话只是说命名为GA,没说支持什么,往下看说GA的发现支持了元素周期律,而问题刚好是问GA的发现支持了什么,所以答案是C,元素周期表的组成规律,也就是元素周期律。
11.原文的结构是R研究了一种气体,并且发现这种气体是氦,所以答案是D。A完全搞乱了原文的结构,氦在太阳光谱中不是R发现的;B的转折关系错;C和A的错误相似,氦在太阳光谱中不是R发现的。
12.postulate推断,推测,所以hypothesize正确。原句说这两个人怎么样一个新的元素族的存在,接着后面的人分离出了这些元素,既然是后面的人分离的,discover和report就不对,因为这两个词有他们两个发现的意思;generate完全不对,这两个人不能产生元素。
13.三个过渡点,分别是名词chemical groups,名词sequence和动词词组repeat itself,这几个点都可以确定B或者C是答案,但B前后的atomic mass说明两句话的过渡是非常紧密的,所以B被排除,答案是C。
14.Lord选项错,原文没说他的研究提供了元素周期表限制元素数量的证据,不选。Ramsay and Lord选项错,原文没说他们俩挑战了卡文迪许,不选。Isotopes选项是原文第二段中的一个细节,不选。Mendeleyev and Meyer选项对应原文第一段后半部分,正确。Mendeleyev’s选项对应原文第三段最后两句,正确。In the 1890’s选项对应全文最后一句话,正确。
托福阅读译文
元素周期表是按原子序数(元素原子核中质子的数量)由小到大依次排列,反映化学周期性和元素的物理特征的图表。这一科学发现具有里程碑的意义,它进一步证明了科学探索过程中观察、预测和实证之间的根本联系。19世纪一开始,科学家们不断探索新的元素。到19世纪60年代后期,已经发现了60种以上的化学元素,而许多描述性化学被认知。人们提出各种建议,认为该基于化学和物理特征的相似性将化学元素排列成组。他们接下来又证实了元素的族群特性(物理或是化学相似性)和原子质量(一种元素的单个原子的测量质量)之间存在联系。当时元素还是按照原子质量从小到大排列,人们发现,一些具备连续性的元素却分属不同的化学组,并且发现在这种排列方式下,元素群组的顺序是固定的且定期重复。因此,当每一新行都以碱性金属元素开始并逐步将这一系列的元素排列出来时,元素周期表中同一组中的元素就会自动归入一个垂直纵列中。这个表格就是现代元素周期表的雏形。
当德国化学家迈耶(Lother Meyer)和(彼此独立的)俄国化学家门捷列夫在1869年到1870年间首次发布元素周期表时,有三分之一的天然化学元素还没被发现。然而这两位化学家都极富远见,他们在周期表上留白,对元素物理性和化学性的分析空白处还有新的元素有待发现。门捷列夫比迈耶更为大胆,他甚至做出假设,如果周期表按原子质量排列,但元素位置不对的话,那么原子质量也是错的。在某些情况下,这个设想是正确的。以铟为例,先前测量出铟的原子质量在砷和硒之间。但是因为在周期表中这两个元素之间没有缝隙,由此门捷列夫提出铟的原子质量变为截然不同的一个值,这样就可以将其置于镉和锡之间的空位。事实上,接下来的研究表明,元素周期表中元素不能严格按照原子质量排列。例如,尽管碲的原子质量比碘略大,但在元素周期表中,它却排在碘前面。出现这种反常现象,主要是因为相对丰富的“同位素 ”或者各种元素的多样性。同一元素的所有同位素具有相同的质子数,但中子数不同,因此它们的原子质量也不一样。一个特定元素的同位素具有相同的化学特征,但在物理性质上有一些细微差异。现在我们知道,是原子数目(原子核中质子的数量)而非原子质量(质子和中子的数量)决定着元素的化学性质。
门捷列夫在另一个研究上也比迈耶更为深入:他预测还有六种元素的性质待被发现。例如,就在铝下面有一个空位,这表明还有一个性质和铝类似的新元素存在。门捷列夫将该元素定义为“铝下元素 ”(eka是梵语词,意思是 “下一个”)并且还预测了其性质。仅仅5年之后,原子质量相吻合的元素就被分离出来,发现者将其命名为“镓”。镓所表现出的特性和门捷列夫对“铝下元素”的预测一一对应,这为元素法则提供了一个强有力的依据。还有一个例证,1885年发现“硅下元素”,同样为门捷列夫所预测,后来命名为锗。
元素周期表的框架似乎限制了可能存在的元素数量。因此,当约翰?威廉姆?斯特拉特(瑞利男爵),在1894年发现一种气态元素不能适应之前的元素表时会非常惊讶。一个世纪以前,亨利?卡文迪许就注意到,当氧气和氮气从空气中被移除后仍然有残余气体存在,但当时没人意识到其中的重要性。瑞利和威廉?拉姆齐一道,共同分离出一种气体(将之与其他物质隔离并存于一个真空环境)并将其命名为氩。拉姆齐经过研究又发现了另一种存在于自然界中的气体元素——氦,该元素在太阳中存在,并且很早就被发现存在于太阳光谱中,但是之前并没有在地球上找到过。瑞利和拉姆齐做出假设,认为存在一组新元素,1898年,这一系列元素中的其他元素(氖,氪,氙)也被成功分离出来。
具有相同质子数,不同中子数(或不同质量数)同一元素的不同核素互为同位素(Isotopes)。
Eka是一个用来为在元素周期表中位于某个元素下面的位置的化学元素命名的前缀。前缀eka-尤其用于命名尚未发现的元素。例如,在发现锗以前它被称为硅下元素(eka-硅,ekasilicon)。
托福阅读TPO16(试题+答案+译文)第2篇相关 文章 :
新托福由四部分组成,分别是阅读(Reading)、听力(Listening)、口试(Speaking)、写作(Writing)。每部分满分30分,整个试题满分120分。
阅读
新托福考试阅读部分约为60分钟,包括3篇文章,每篇650至750个单词,每篇对应11至13道试题。题目类型包括:图表题,篇章总结题(从给出的选项中选择能够概括文章内容的句子),变换措辞题,词汇题(在一定的上下文中),指代关系题,简化句子题,插入文本题,事实信息题,推断题,修辞目的题以及否定排除题(例如,下列各项均正确除……之外)。在完成答题的过程中,考生可以使用“复查”功能瞬间找出没有回答的题目,而不必每道题都过一遍。阅读部分的总分是42至45分。
听力
听力部分包含两个对话和四段演讲(包括教室对话在内)。每个对话涉及2个或2个以上的说话者,每个对话对应5道试题;每段演讲对应6道试题。听力部分共包括34道试题。每道试题是1至2分,共34至36分。听力部分的时间大约是20分钟。每个对话是2至3分钟,每个演讲是4至6分钟。考生可以在听录音的过程中做笔记帮助答题。
听力水平无疑是新托福成功与否的关键,除阅读外,无论哪一部分都离不开“听”。对于中国考生来说,听力却正是薄弱环节。中国考生提高听力的其中一条有效途径是“听写法”,即把相关听力材料拿来精听,并把听到的内容逐句写下来。也有专门用来练习新托福听写的软件,如新托福听写王软件。“听写法”提高听力的一个缺点是,刚开始练习时可能比较费时。
口语
新托福考试的口语部分共有6题,总时间约为15分钟。
第1题和第2题为独立回答题,准备时间为15秒,回答问题时间为45秒。问题会被朗读出来,同时会出现在屏幕上。
第3题和第4题要求考生先阅读一段文字,然后再听一段与阅读文字在内容上相关的听力材料,最后考生按照要求回答相关问题。通常一道题是情景题,另一道是学术题,阅读材料只含一个自然段,共45秒钟的阅读时间。听力材料可能是对话,也可能是演讲,其长度大约为1分半钟,考生可以在听录音的过程中做笔记来帮助答题。考生有30秒的准备时间,60秒的回答问题时间。
第5题和第6题以考试中的听力材料为基础,要求考生回答相关问题。考生有20秒的准备时间,60秒的时间回答问题。每个回答的得分是0至4分。参加有针对性的考前模拟对真实环境和发挥都有一定的效果,像易格英语美国外教新托福一对一辅导。
写作
新托福考试的写作部分包括两道试题,需在大约50分钟的时间内完成。独立写作试题部分需30分钟的时间,需要考生根据自己的知识和经验陈述、解释并支持对待某一问题的某个看法。通常有效的回答应是一篇300个单词左右的作文。对于以阅读和听力材料为基础的写作试题,考生首先需要阅读一篇学术演讲,阅读的时间是3分钟。然后文章隐去,这时考生需要听一段大约为1分半钟的演讲。但是考生在写作文时可以看到在放听力材料时隐去的阅读材料。考生在听录音的过程中可以做笔记来帮助答题。此外,考生有20分钟的时间来总结听力材料中的要点,并解释这些要点与阅读材料中的要求有何不同。通常有效的回答应是一篇150至225个单词的作文。每个写作任务的分数是0至5分。考查综合语言技能的作文题目的评分以回答的质量、完整性和准确性为依据。
加试
一般实际考试中,考生往往会在听力或阅读部分碰到加试试题,加试部分不算分,但考生事先并不知道哪一部分是加试部分,所以应该认真对待。