考试题库 初中 > 初中数学

11.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为(  )A.($\sqrt{3}$,-1)B.(

274次

题目详情:

11.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为(  )

A.($\sqrt{3}$,-1)B.(1,-$\sqrt{3}$)C.($\sqrt{2}$,-$\sqrt{2}$)D.(-$\sqrt{2}$,$\sqrt{2}$)

最佳答案

试题答案

每天题库在线刷题

刷题街,随时随地刷题

2024-10-24 04:42:58

分析 先根据题意画出点A′的位置,然后过点A′作A′C⊥OB,接下来依据旋转的定义和性质可得到OA′的长和∠COA′的度数,最后依据特殊锐角三角函数值求解即可.

解答 解:如图所示:过点A′作A′C⊥OB.

∵将三角板绕原点O顺时针旋转75°,
∴∠AOA′=75°,OA′=OA.
∴∠COA′=45°.
∴OC=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$,CA′=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$.
∴A′的坐标为($\sqrt{2}$,-$\sqrt{2}$).
故选:C.

点评 本题主要考查的是旋转的定义和性质、特殊锐角三角函数值的应用,得到∠COA′=45°是解题的关键.

为你推荐

我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号