松子至少有多少个?|四年级奥数题及答案
有一只小松鼠,不爱动脑子,做什么事情都怕麻烦。一次,妈妈叫小松鼠清点一堆松子,至少有几十个。它两个两个地数,最后多出一个。它嫌麻烦,把这一个扔在一边,不管了,但前面的数它又忘了。于是又五个五个地数,数到最后还多一个,它又把这多出的一个扔到一边去,又从头数起。它想数得快一点儿,于是七个七个地数,数到最后,偏偏还多一个,它又把这多出的一个扔了。小松鼠就这么折腾了三次,到头来这堆松子的总数仍然没有数清楚。小朋友,你能帮助它算一算这堆松子至少有多少个吗?
解答:题目的意思可以概括为:求这样一个数,被2除余1,被5除余2,被7除余3。”这个问
题比较复杂,因为所求的的数被2、5、7除,余数又各不一样。
现在我们用“累加法”求解。具体作法是:用3加7,再加7得17,而17是被5除余2的数,这数
被2除也余1,所以它是符合三个条件的数。但是题意说,松子有几十个,可见17不符合这个要求
,还得另找其他数才行。为此,在17上加35,再加35得87,而87是继17后第一个符合三个条件的数,所以87就是本题的答案。
验算一下,87被2除余l,被5除余2,被7除余3,符合题意。
这种方法的道理是先从被7除余3的数中去找被5除余2的数;再从“被7除余3,被5除余2”的数中去找被2除余1的数。第一个符合条件的数就是要求的数中最小的一个数。如果要求的数不是最小的数,而是某一个范围的数,那么只要加上70的适当倍数,就可以了。比如,题目要说这堆松子有200多个,要求算一算这堆松子到底有多少个?你只要用87加上两个70,得227个便是答案。