培训啦 初中学习 > 初中数学题库

在锐角三角形ABC中,三个内角的度数都是质数,求证:三角形ABC是等腰三角形.

题文

在锐角三角形ABC中,三个内角的度数都是质数,求证:三角形ABC是等腰三角形.

题型:未知 难度:其他题型

答案

证明:不妨设0°<∠A≤∠B≤∠C<90°,
由∠A+∠B+∠C=180°及∠A、∠B、∠C为质数,
∠A+∠B+∠C为偶数,所以∠A、∠B、∠C三个质数不能同时为奇数,
其中一个必为偶数,则不妨令∠A=2°,
则∠B+∠C=178°及∠B≤∠C<90°,
得∠B=∠C=89°.
故三角形ABC是等腰三角形.

解析

该题暂无解析

考点

据培训啦专家说,试题“在锐角三角形ABC中,三个内角的度数都是.....”主要考查你对 [有理数定义及分类 ]考点的理解。

有理数定义及分类

有理数的定义:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

有理数的分类:
(1)按有理数的定义:
                              正整数 
                 整数{     零 
                              负整数
有理数{     
                            正分数 
                分数{
                            负分数
 
(2)按有理数的性质分类: 
                           正整数  
               正数{ 
                           正分数
有理数{  零
                           负整数 
               负数{
                           负分数

985大学 211大学 全国院校对比 专升本 美国留学 留求艺网

温馨提示:
本文【在锐角三角形ABC中,三个内角的度数都是质数,求证:三角形ABC是等腰三角形.】由作者瞄苗教育说提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号 美国留学 留求艺