教育指南社
分享热门教育资讯,解决孩子教育难题。
发布时间: 2024年11月23日 15:16
题文
证明:32不可能写成n个连续自然数的和.
题型:未知 难度:其他题型
答案
连续N个自然数的和为 四=n+(n+1)+(n+2)…+(n+m)=(2n+m)(m+1)/2 若m为奇数,则2n+m为奇数若m为偶数,则m+1为奇数则N个自然数的和必为奇数*偶数或奇数*奇数 32=2x无论怎么分除了1和32之外分不出这样的奇数*偶数,1和32非连续偶数,所以32不可能写成n个连续自然数的和
解析
该题暂无解析
考点
据培训啦专家说,试题“证明:32不可能写成n个连续自然数的和......”主要考查你对 [有理数定义及分类 ]考点的理解。
有理数定义及分类
有理数的定义:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
有理数的分类:
(1)按有理数的定义:
正整数
整数{ 零
负整数
有理数{
正分数
分数{
负分数
(2)按有理数的性质分类:
正整数
正数{
正分数
有理数{ 零
负整数
负数{
负分数