培训啦 初中学习 > 初中数学题库

证明:32不可能写成n个连续自然数的和.

题文

证明:32不可能写成n个连续自然数的和.

题型:未知 难度:其他题型

答案

连续N个自然数的和为 四=n+(n+1)+(n+2)…+(n+m)=(2n+m)(m+1)/2 若m为奇数,则2n+m为奇数若m为偶数,则m+1为奇数则N个自然数的和必为奇数*偶数或奇数*奇数 32=2x无论怎么分除了1和32之外分不出这样的奇数*偶数,1和32非连续偶数,所以32不可能写成n个连续自然数的和

解析

该题暂无解析

考点

据培训啦专家说,试题“证明:32不可能写成n个连续自然数的和......”主要考查你对 [有理数定义及分类 ]考点的理解。

有理数定义及分类

有理数的定义:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

有理数的分类:
(1)按有理数的定义:
                              正整数 
                 整数{     零 
                              负整数
有理数{     
                            正分数 
                分数{
                            负分数
 
(2)按有理数的性质分类: 
                           正整数  
               正数{ 
                           正分数
有理数{  零
                           负整数 
               负数{
                           负分数

985大学 211大学 全国院校对比 专升本 美国留学 留求艺网

温馨提示:
本文【证明:32不可能写成n个连续自然数的和.】由作者教育指南社提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号 美国留学 留求艺