互联网教育大热点
专注在线教育行业,打造互联网教育热点事件第一自媒体账号
发布时间: 2024年12月24日 02:29
题文
先化简,后求值:14(-4x3+2x-8)-(12x-1),其中x在数轴上的对应点到原点的距离为12个单位长度.
题型:未知 难度:其他题型
答案
原式=-x3+12x-2-12x+1=-x3-1,
又∵x到原点的距离为12个单位长度,
∴x=±12,
当x=12时,原式=-18-1=-98;
当x=-12时,原式=18-1=-78.
解析
12
考点
据培训啦专家说,试题“先化简,后求值:14(-4x3+2x-8.....”主要考查你对 [数轴 ]考点的理解。
数轴
数轴定义:
规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
数轴具有三要素:
原点、正方向和单位长度,三者缺一不可。
数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。
用数轴上的点表示有理数:
每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
2.表示正数的点都在原点右边,表示负数的点都在原点左边。
3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。
数轴的画法:
1.画一条直线(一般画成水平的直线);
2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
3.确定正方向(一般规定向右为正,并用箭头表示出来);
4.选取适当的长度为单位长度,
从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
从原点向左,用类似的方法依次表示-1,-2,-3,…。
数轴的应用范畴:
符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。