培训啦 考试资料 > 教学设计

因式分解教学设计(必备3篇)

发布时间: 2024-11-06 08:13

因式分解教学设计(1)

教学目标

认知目标:

(1)理解因式分解的概念和意义

(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

目标制定的思想

1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。

2.课堂教学体现能力立意。

3.寓德育教学方法

1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。

2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高能力。

3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。

4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。

教学过程安排

一、提出问题,创设情境

问题:看谁算得快?

(1)若a=101,b=99,则a2-b2=(a+b)(a-b)=(101+99)(101-99)=400

(2)若a=99,b=-1,则a2-2ab+b2=(a-b) 2=(99+1)2 =10000

(3)若x=-3,则20x2+60x=20x(x+3)=20x(-3)(-3+3)=0

二、观察分析,探究新知

(1)请每题想得最快的同学谈思路,得出最佳解题方法

(2)观察:a2-b2=(a+b)(a-b) ①的左边是一个什么式子?右边又是什么形式?

a2-2ab+b2 =(a-b) 2 ②

20x2+60x=20x(x+3) ③

(3)类比小学学过的因数分解概念,(例42=2×3×7 ④)得出因式分解概念。

板书课题: 因式分解

1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

三、独立练习,巩固新知

练习

1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?

①(x+2)(x-2)=x2-4

②x2-4=(x+2)(x-2)

③a2-2ab+b2=(a-b)2

④3a(a+2)=3a2+6a

⑤3a2+6a=3a(a+2)

2.因式分解与整式乘法的关系:

因式分解

结合:a2-b2=========(a+b)(a-b)

整式乘法

说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

(2)∵xy( )=2x2y-6xy2

∴2x2y-6xy2=xy( )

(3)∵2x( )=2x2y-6xy2

∴2x2y-6xy2=2x( )

四、强化训练,掌握新知:

练习3:把下列各式分解因式:

(1)2ax+2ay (2)3mx-6nx (3) x2y+xy2

(4) x2+-x (5) x2-0.01

(让学生上来板演)

五、整理知识,形成结构(即课堂小结)

1.因式分解的概念 因式分解是整式中的一种恒等变形

2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。

3.利用2中关系,可以从整式乘法探求因式分解的结果。

4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。

六、布置作业

1.作业本(一)中§7.1节

评价与反馈

1.通过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的能力和逆向思维能力及创新能力。发现问题,及时反馈。

2.通过例题及练习,了解学生对概念的理解程度和实际运用能力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。

七.课堂小结,了解学生对概念的熟悉程度和归纳概括能力、语言表达能力、知识运用能力,教师恰当地给予引导和启迪。

因式分解教学设计(2)

教学准备

教学目标

知识与能力

1.了解多项式公因式的意义,初步会用提公因式法分解因式;

2.通过找公因式,培养观察能力.

过程与方法

1.了解因式分解的概念,以及因式分解与整式乘法的关系;

2.了解公因式概念和提取公因式的方法;会用提取公因式法分解因式.

情感态度与价值观

1.在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法;

2.培养观察、联想能力,进一步了解换元的思想方法;

教学重难点

重点:能观察出多项式的公因式,并根据分配律把公因式提出来.

难点: 识别多项式的公因式.

教学过程

一、 新课导入

请同学们想一想?993-99能被100整除吗?

解法一:993-99=970299-99

=970200

解法二:993-99=99(992-1)

=99(99+1)(99-1)

=100×99×98

=970200

(1)已知:x=5,a-b=3,求ax2-bx2的值.

(2)已知:a=101,b=99,求a2-b2的值.

你能说说算得快的原因吗?

解:(1) ax2-bx2=x2(a-b)

=25×3=75.

(2) a2-b2=(a+b)(a-b)

=(101+99)(101-99)

=400

二、新知探究

1、做一做:

计算下列各式:

①3x(x-2)= __3x2-6x

②m(a+b+c)= ma+mb+mc

③(m+4)(m-4)= m2-16

④(x-2)2= x2-4x+4

⑤a(a+1)(a-1)= a3-a

根据左面的算式填空:

①3x2-6x=(_3x__)(_x-2__)

②ma+mb+mc=(_m_)(a+b+c_)

③m2-16=(_m+4)(m-4_)

④x2-4x+4=(x-2)2

⑤a3-a=(a)(a+1)(a-1)

左边一组的变形是什么运算?右边的变形与这种运算有什么不同?右边变形的结果有什么共同的特点?

总结: 把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

整式乘法 因式分解与整式乘法是互逆过程 因式分解

在am+bm=m(a+b)中,m叫做多项式各项的公因式.

公因式:

即每个单项式都含有的相同的因式.

提公因式法:

如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.

确定公因式的方法:

(1)公因式的系数是多项式各项系数的最大公约数;

(2)字母取多项式各项中都含有的相同的字母;

(3)相同字母的指数取各项中最小的一个,即最低次幂.

三、例题分析

例1 把12a4b3+16a2b3c2分解因式.

解:12a4b3+16a2b3c2

=4a2b3·3a2+ 4a2b3 ·4c2

= 4a2b3 (3a2 + 4c2)

提公因式后,另一个因式:

①项数应与原多项式的项数一样;

②不再含有公因式.

例2 把2ac(b+2c)- (b+2c)分解因式.

解:2ac(b+2c) -(b+2c)

= (b+2c)(2ac-1)

公因式可以是数字、字母,也可以是单项式,还可以是多项式.

例3 把-x3+x2-x分解因式.

解:原式=-(x3-x2+x)

=-x(x2-x+1)

多项式的第一项是系数为负数的项,一般地,应提出负系数的公因式.但应注意,这时留在括号内的每一项的符号都要改变,且最后一项“-x”提出时,应留有一项“+1”,而不能错解为-x(x2-x).

四、当堂训练

1.(1)9x3y3-12x2y+18xy3中各项的公因式是 3xy_.

(2)5x2-25x的公因式为 5x .

(3)-2ab2+4a2b3的公因式为-2ab2.

(4)多项式x2-1与(x-1)2的公因式是x-1.

2.如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是 (x-y)2

课后小结

1.分解因式

把一个多项式分解成几个整式的积的形式,叫做分解因式,分解因式和整式乘法互为逆运算.

2.确定公因式的方法

一看系数 二看字母 三看指数

3.提公因式法分解因式步骤(分两步)

第一步 找出公因式;

第二步 提公因式.

4.用提公因式法分解因式应注意的问题

(1)公因式要提尽;

(2)某一项全部提出时,这一项除以公因

式时的商是1,这个1不能漏掉;

(3)多项式的首项取正号.

板书

一、因式分解

把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

二、提公因式法

如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.

am+bm=m(a+b)

二、例题分析

例1、

例2、

例3、

三、当堂训练

因式分解教学设计(3)

数学上册因式分解教学设计范文

作为一名教职工,往往需要进行教学设计编写工作,借助教学设计可以促进我们快速成长,使教学工作更加科学化。我们应该怎么写教学设计呢?以下是小编收集整理的数学上册因式分解教学设计范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

教学目标

1.使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.

2.通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力.

教学重点

1.理解因式分解的意义.

2.识别分解因式与整式乘法的关系.

教学难点

通过观察,归纳分解因式与整式乘法的关系.

教学目标

一、创设问题情境,引入新课

计算(a+b)(a-b)

a2-b2=(a+b)(a-b)成立吗?那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.

二、讲授新课

1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流.

993-99能被100整除.

因为993-99=99×992-99

=99×(992-1)=99×9800=99×98×100

其中有一个因数为100,所以993-99能被100整除.993-99还能被哪些正整数整除?

还能被99,98,980,990,9702等整除.

从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.

2.议一议

你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.

观察a3-a与993-99这两个代数式.

3.做一做

(1)计算下列各式:

①(m+4)(m-4)=__________;

②(y-3)2=__________;

③3x(x-1)=__________;

④m(a+b+c)=__________;

⑤a(a+1)(a-1)=__________.

(2)根据上面的算式填空:

①3x2-3x=( )( );

②m2-16=( )( );

③ma+mb+mc=( )( );

④y2-6y+9=( )2.

能分析一下两个题中的形式变换吗?

在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.

在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解.

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式

4.想一想

由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?

由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是分解因式,这两种过程正好相反.

由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反.

如:(1)m(a+b+c)=ma+mb+mc (2)ma+mb+mc=m(a+b+c)

联系:等式(1)和(2)是同一个多项式的两种不同表现形式.

区别:等式(1)是把几个整式的`积化成一个多项式的形式,是乘法运算.

等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.

即ma+mb+mc m(a+b+c).

所以,因式分解与整式乘法是相反方向的变形.

5.例题:下列各式从左到右的变形,哪些是因式分解?

(1)4a(a+2b)=4a2+8ab;

(2)6ax-3ax2=3ax(2-x);

(3)a2-4=(a+2)(a-2);

(4)x2-3x+2=x(x-3)+2.

(1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,不是因式分解;

(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;

(3)和(2)相同,是因式分解;

(4)是因式分解.

三、课堂练习 连一连(略)

【微语】永远自由如风,永远为自己着迷。

985大学 211大学 全国院校对比 专升本

温馨提示:
本文【因式分解教学设计(必备3篇)】由作者教培参考提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号