一、教学目标
1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算.
2.会进行简单的二次根式的乘法运算.
3.使学生能联系几何课中学习的勾股定理解决实际问题.
二、教学重点和难点
1.重点:
会利用积的算术平方根的性质化简二次根式.
2.难点:
二次根式的乘法与积的算术平方根的关系及应用.
重点难点分析:
本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简.积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.
本节难点是二次根式的乘法与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的.条件一定要满足.
三、教学方法
从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法.
1. 由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。
2. 积的算术平方根的性质和 ( )及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要
的作用,所以在教学中对于培养的思维品质有着重要的作用。
四、教学手段
利用投影仪.
五、教学过程
(一)引入新课 观察例子得到结果
类似地可以得到:
由上一节知道一般地,有=(a,b)
通过上面的例子,大家会发现 =(a,b) 也成立
(二)新课
积的算术平方根.
由前面所举特殊的例子,引导学生总结出:一般地,有 (a≥0,b≥0). 积的算术平方根,等于积中各因式的算术平方根的积.
要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积.根据这个性质可以对二次根式进行恒等变形。化简,使被开方数不含完全平方的因数(或因式):
1、 2、 3、
说明:1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。
2、 (a≥0,b≥0)可以推广为 (a≥0,b≥0,c≥0)
化简二次根式的步骤
1、将被开方数尽可能分解出平方数;
2、应用=(a,b)
3、将平方项利用=化简
小结:
1、积的算术平方根与二次根式的乘法的互逆性;
2、灵活应用他们进行二次根式的乘法运算及化简二次根式
作业;由于本节课后习题较少,可适当补充紧贴教材的课外习题
以上是数学网提供的八年级《二次根式的乘法》说课稿的全部内容,欢迎批评指正,如需学习更多内容请关注数学网。
《二次根式加减》九年级数学说课稿
一、说教材的地位和作用
1、内容:
二次根式的加减,利用二次根式化简的数学思想解应用题,含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.
2.本节在教材中的地位与作用:
二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础
二、说教学目标、重点、难点:
1、教学目标:
(1) 知识与技能:
1.含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.
2.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.
理解和掌握二次根式加减的方法.
3.运用二次根式、化简解应用题.
4.通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.
(2) 数学思考:
先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简
(3)解决问题:先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(3) 情感态度与价值观:通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
2、教学重点、难点:二次根式化简为最简根式.二次根式的乘除、乘方等运算规律;
三、说如何突出重点、突破难点:
难点关键:会判定是否是最简二次根式,讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.由整式运算知识迁移到含二次根式的运算
为了突破难点,教学中我注意:
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.
四、学情分析:二 次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础
五、说教学教学策略和学法
(一) 教法分析
根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。教学方法是学生分组讨论,合作探究、问题教学法,尽量做到问题让学生提,答案让学生想,过程让学生写,让学生自己归纳总结。让一个个有阶梯的'问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:
1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。
2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。
(二) 学法分析
使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。
(三) 教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:(一)、复习引入新课;(二)、探索新知;(三)、巩固练习;(四)、总结反思;(五)、布置作业 拓展升华。
(一)、复习引入新课:利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课.
(二)、探索新知:本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(四)、总结反思:在此环节中,我让学生谈收获和体会。使学生对本节课有一个全面的回顾与思考,从中抓住本节课的主旨与重点,即充分调动学生的积极性,从而达到培养学生归纳概括能力和语言表达能力。
(五)、布置作业 拓展升华:在此部分中分为必做题:教科书上的题。选做题:(思考题)来自练习册。必做题面向全体学生,巩固重点,达标训练。选做题使不同的学生有不同的发展。这样做既达到了面向全体学生,又做到了因材施教的目的。
二次根式的乘除第一课时的说课稿
各位评委大家下午好:
今天我说课的内容是八年级下册第十二章第二节的第一课时《12.2二次根式的乘除(1)》。通过对教材及学生实际情况的分析,我将从检查预习,自主学习,合作交流,展示质疑,拓展提高、总结检测六个方面展开教学。
(一)检查预习
1. 在上课前一天将学案发给学生,引导学习预习。上课最初5分钟检查学生的预习情况。课程标准要求学生“学会自己预习”,因此要求学生课前通过教材自主预习掌握新知识,掌握知识之间的联系,上课以自检,小组互检和课堂检查相结合的方式督促。在检查预习部分我设计了两个自学内容,自学一重点是特殊的二次根式相乘,让学生自己发现规律;自学二是一般的二次根式相乘,学生可以利用正方形面积减去其他三角形的面积求出矩形的面积,而矩形的面积还等于长乘以宽,进而得到 × =4,同样得到规律,进而总结出二次根式乘法公式。
2. 检查预习的过程中已经进入了新课,这样避免了情景导入后因检查预习造成的情感脱节。
3.出示学习目标,让学生明确学习目标,上课才有了学习的方向,也 便于学生课后自我评价。
(二)自主学习:
学讲开放课堂也是在培养学生学会自学,因此我设计这个环节,让学生自己打开教材,自主学习,多媒体出示学习要求,方法指导,学生在自主设计的基础上小组合作推选出代表发言,然后用小黑板展示各组成果。老师最后归纳总结,在保证正确的.前提下,对学生积极发言,勇于回答问题提出表扬,并给予一定的分值,在这一过程中既训练了学生主动学习的能力,自主学习的意识,又培养了学生的数学表达能力,同时还督促了学生整洁、规范的书写。
知者加速环节是考虑到每个学生学习能力的不同,各小组完成速度的不同,让学有余力的同学有事可干,在学案中设计这一环节,也便于更好的过渡到下一个环节。
(三)小组合作
这一环节教师提出任务,让每一组成员相互讨论,筛选、补充、概括等四个学习活动,从而形成新的学习成果。这样既调动了学生学习的积极性,同时引导学生学会了新的知识点,解决了教学重难点。
(四)展示质疑
这个环节我设计一个抢答环节,让每一个小组都有机会参与到这个环节中来,采用自主思考,小组合作交流,小组代表展示的方式。并让各层次的学生都谈一谈,让学生再一次通过自主、合作、探究品尝合作的快乐和集体智慧的甘甜。既体现了教材的主旨,又在发展数学表达能力的同时,发散了思维。
在学生各抒己见之后老师总结:进入拓展延伸部分
(五)拓展延伸
这一环节设置的目是让学生把学习和生活,把课堂和课外有机的结合起来,锻炼学生的表达能力的同时,更好的理解数学源于生活,服务于生活这一特点,所以每个人都要学好数学,起到了很好的教育作用。
(六)课堂检测
通过检测让学生知道自己的掌握情况,便于课后巩固,也便于老师了解学生的学习情况,做好下面的备课。
在这里我设计了让学生谈谈本节课的收获,通过学生自己谈收获。既反思了本节课的学习,锻炼了学生评价与自我评价的能力,又提高了学生的数学表达能力。
作业布置主要是从巩固性和发展性考虑的,布置一些适合学生发展的题目,让每位学生都能得到不同的发展。
这是我设计的“学讲计划”模式下的说课稿,有些不成熟的地方,还需要大家指正、批评。
二次根式的乘法说课稿
作为一名人民教师,有必要进行细致的说课稿准备工作,说课稿有助于教学取得成功、提高教学质量。说课稿应该怎么写才好呢?下面是小编精心整理的二次根式的乘法说课稿,欢迎大家分享。
一、教学目标
1、使学生能够利用积的算术平方根的性质进行二次根式的化简与运算。
2、会进行简单的二次根式的乘法运算。
3、使学生能联系几何课中学习的勾股定理解决实际问题。
二、教学重点和难点
1、重点:会利用积的算术平方根的性质化简二次根式。
2、难点:二次根式的乘法与积的算术平方根的关系及应用。
重点难点分析:
本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简。积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础。二次根式的.计算和化简通常与如勾股定理等几何方面的知识综合在一起。
本节难点是二次根式的乘法与积的算术平方根的关系及应用。积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识。要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足。
三、教学方法
从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法。
1、由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。
2、积的算术平方根的性质和比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。
四、教学过程
(一)引入新课,观察例子得到结果
类似地可以得到:
由上一节知道一般地,有=(a,b)
通过上面的例子,大家会发现=(a,b)也成立
(二)新课
积的算术平方根。
由前面所举特殊的例子,引导学生总结出:一般地,有(a≥0,b≥0)。
积的算术平方根,等于积中各因式的算术平方根的积。
要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0。在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积。根据这个性质可以对二次根式进行恒等变形。
化简,使被开方数不含完全平方的因数(或因式):
1、2、3
说明:
1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。
2、(a≥0,b≥0)可以推广为(a≥0,b≥0,c≥0)
化简二次根式的步骤
1、将被开方数尽可能分解出平方数;
2、应用=(a,b)
3、将平方项利用=化简
小结:
1、积的算术平方根与二次根式的乘法的互逆性;
2、灵活应用他们进行二次根式的乘法运算及化简二次根式
作业:由于本节课后习题较少,可适当补充紧贴教材的课外习题。
《二次根式加减》说课稿范文
作为一名教职工,很有必要精心设计一份说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。如何把说课稿做到重点突出呢?以下是小编为大家收集的《二次根式加减》说课稿范文,希望能够帮助到大家。
一、说教材的地位和作用
1、内容:
二次根式的加减,利用二次根式化简的数学思想解应用题,含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用。
2、本节在教材中的地位与作用:
二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础
二、说教学目标、重点、难点:
1、教学目标:
(1) 知识与技能:
1、含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用。
2、复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算。
3、理解和掌握二次根式加减的方法。
4、运用二次根式、化简解应用题。
5、通过复习将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题。
(2) 数学思考:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的.方法的理解。再总结经验,用它来指导根式的计算和化简
(3)解决问题:先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。
(3) 情感态度与价值观:通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。
2、教学重点、难点:二次根式化简为最简根式。二次根式的乘除、乘方等运算规律;
三、说如何突出重点、突破难点:
难点关键:会判定是否是最简二次根式,讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点。由整式运算知识迁移到含二次根式的运算
为了突破难点,教学中我注意:
1、潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。
2、培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。
四、学情分析:
二 次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础
五、说教学教学策略和学法
(一) 教法分析
根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。教学方法是学生分组讨论,合作探究、问题教学法,尽量做到问题让学生提,答案让学生想,过程让学生写,让学生自己归纳总结。让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:
1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。
2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。
(二) 学法分析
使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。
(三) 教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(二)、探索新知:本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(四)、总结反思:在此环节中,我让学生谈收获和体会。使学生对本节课有一个全面的回顾与思考,从中抓住本节课的主旨与重点,即充分调动学生的积极性,从而达到培养学生归纳概括能力和语言表达能力。
(五)、布置作业 拓展升华:在此部分中分为必做题:教科书上的题。选做题:(思考题)来自练习册。必做题面向全体学生,巩固重点,达标训练。选做题使不同的学生有不同的发展。这样做既达到了面向全体学生,又做到了因材施教的目的。
【微语】道之以政,齐之以刑,民免而无耻;道之以德,齐之以礼,有耻且格。(为政)