教培参考
教育培训行业知识型媒体
发布时间: 2024年11月22日 20:52
教学目标
知识与技能目标
(1)了解有理数的运算法则在实数范围内仍然适用.
(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.
(3)正确运用公式:
(≥0,≥0)(≥0,>0)
这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念.
过程与方法目标
(1)通过具体数值的运算,发现规律,归纳总结出规律.
(2)能用类比的方法解决问题,用已有知识去探索新知识.
情感与态度目标
由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养.
教学重点
(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算.
(2)发现规律:
(≥0,≥0)(≥0,>0)
教学难点
(1)类比的学习方法.
(2)发现规律的过程.
教学准备:
教材、、电脑.电脑软件:Word,Powerpoint.
教学过程
第一环节:复习引入(2分钟,学生通过回答问题,回顾旧知)
问题1:有理数中学过哪些运算及运算律?
答:加、减、乘、除、乘方,加法()交换律、结合律,分配律.
问题2:实数包含哪些数?
答:有理数,无理数.
问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?
答:这是我们本节课要解决的新问题.
一、教材分析
1、教学内容
这节课的教学内容主要介绍无理数、实数的概念以及实数与数轴上的点一一对应的关系。
2、教材的地位和作用
本节课是人教版《数学》八年级(上)第十三章最后一个小节的内容,是在学生学习了平方根、立方根以后,接触过“2”、“π”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数。在中学阶段,大多数问题都是在实数的范围内研究的,因此,它对今后的数学学习有着非常重要的意义。
无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,实数和数轴上的点一一对应蕴含着数形结合的思想。所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数学美的有效载体,也是发展学生逻辑思维能力的重要内容。
二、目标分析
1、教学目标
依据《课程标准》,并结合教材内容及学生的认知水平和思维特点,确定本节课的教学目标:
知识目标:了解无理数、实数的概念和实数的分类;知道实数与数轴上的点一一对应。
能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程。通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力。
情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系;通过学生之间的相互交流,增强学生的合作意识。
2、重点、难点和关键
本节课的重点是了解无理数、实数概念和实数的分类。由于学生有了一次从整数扩展到有理数的体验,二次根式的学习又为有理数扩展到实数作了一定的准备,学生学习实数的'困难在于无理数的引入,因此难点是正确理解无理数的意义;关键是把数化为小数形式以后区分有理数与无理数的特征。
三、教法、学法
本节课通过创设问题情境,引导学生回顾认识数的过程,通过合作探索,经历无理数的产生过程,精心设问,适时、适度采用激励性语言,提高学生积极性,从而较好地
完成实数概念的建构,达到教学目标。并结合计算器、多媒体、实物投投仪等现代教投手段实施教学,体现直观性。学生通过动手、动口、动脑等活动,主动探索、发现问题;互动合作,解决问题;归纳概括,形成能力。恰如其分的问题设计,真正的让学生进行探究,突出学生教学主体的地位。
四、教学过程
1、复习旧知,揭示矛盾,引入概念
回顾书本82页探究活动,复习前面所学的有理数的规律任何一个有理数都可以写成有限小数或无限循环小数,而发现如2和π不是有理数,但2确实是存在的,同时π也是如此。出现矛盾以后,来探索无理数的特征,学习实数。
2、概念学习
由上面有理数的规律从而得出无理数的概念,然后通过举例,先从形式上认识无理数,再归纳总结,帮助学生理解无理数的概念。教师小结:“无理数”和“有理数”仅是名称而已,据说是清朝末年从日本引进时,翻译的讹误,因此不能从词义上理解,它们根本的区别,就是凡是有理数,都可以化成两个整数之比(可看成一个分数),而无理数,无论如何也不能化成两个整数之比(不能化为分数),从而突破本课第一个难点。这样理解无理数的概念了,实数的概念和分类就容易理解。然后练习讨论,反馈调整,巩固概念。
3、数形结合,突破难点,深化概念
前面我们从数本身的特征上探讨了数除了有理数外还有无理数,接下来我们再利用数轴来进行说明。
每个有理数都可以用数轴上的点表示,那么数轴上的每一个点都表示有理数吗?无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示
(思考)老师用课件演示有在数轴上表示2和π2和π这样的无理数的点吗?这样的无理数的点,学习在数轴上用构造法表示无理数。也就是说:数轴上的点有些表示有理数,有些表示无理数.每一个无理数都可以用数轴上的一个点来表示。所有的实数都可以用数轴上的点表示,数轴上所有的点都对应着一个实数,即实数与数轴上的点是一一对应的关系。然后练习讨论,反馈调整,巩固新知。
利用课件显示帮助理解以上内容,由此形象、直观展示实数除了有理数外还包括无理数,深化了实数的概念,数形结合,突破本课的难点。通过练习巩固实数概念,分析实数的分类,弄清带根号的数并不都是无理数,无理数指的是无限不循环小数,不能化为分数的数,这才是它的本质特征,明白数的范围扩大后相反数、绝对值的意义仍不变。
4、实数的相反数、绝对值。
教学目标
1、了解无理数和实数的概念;会对实数按照一定的标准进行分类,培养分类能力;
2、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的含义;
3、了解实数范围内相反数和绝对值的意。
教学难点
理解实数的概念。
知识重点
正确理解实数的概念。
教学过程
设计理念
试一试
学生以前学过有理数,可以请学生简单地说一说有理数的基本概念、分类。
试一试
1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
动手试一试,说说你的发现并与同学交流。
(结论:上面的有理数都可以写成有限小数或无限循环小数的形式)
可以在此基础上启发学生得到结论:任何一个有理数都可以写成有限小数或无限循环小数的形式。
2、追问:任何一个有限小数或无限循环小数都能化成分数吗?
(课件展示)
阅读下列材料:
设x=0.=0.333…①
则10x=3.333…②
则②-①得9x-3,即x=
即0.=0.333…=
根据上面提供的方法,你能把0,0化成分数吗?且想一想是不是任何无限循环小数都可以化成分数?
在此基础上与学生一起得到结论:任何一个有限小数或无限循环小数都能化成分数,所以任何一个有限小数或无限循环小数都是有理数。
学生自己回忆有理数的分类,为引入实数的分类作好铺垫。
让学生动手实践,自己去发现并学会与他人交流。
在学生解决了一个问题后,层层深入地提出了一个对学生有更大挑战性的问题,激发学生学习探索的兴趣。
引入新知
1、在前面两节的学习中,我们知道,许多数的平方根和立方根都是无限不循环小数,它们不能化成分数。我们给无限不循环小数起个名,叫“无理数”。有理数和无理数统称为实数。
例1(1)你能尝试着找出三个无理数来吗?
(2)下列各数中,哪些是有理数?哪些是无理数?
解决问题后,可以再问同学:“用根号形式表示的数一定是无理数吗?”
2、实数的分类
(1)画一画
学生自己回忆并画出有理数的分类图。
(2)挑战自己
请学生尝试画出实数的分类图。
例2把下列各数填人相应的集合内:
整数集合{…}
负分数集合{…}
正数集合{…}
负数集合{…}
有理数集合{…}
无理数集合{…}
给出无理数定义后,请学生自己找找无理数,让学生在寻找的过程中,体会无理数的基本特征。
应该让学生自己小结得出结论:判断一个数是有理数还是无理数,应该从它们的定义去辩别,而不能从形式上去分辩。
学生自己尝试画出实数的分类图,体会依据分类标准的不同会有不同的分法。
探一探
我们知道,在有理数中只有符号不同的两个数叫做互为相反数,例如3和-3,和-等,实数的相反数的意义与有理数一样。
请学生回忆在有理数中绝对值的意义。例如,|-3|=3,|0|=0,
知识目标:
掌握平方根、算术平方根、立方根的概念与表示,认识开平(立)方与平(立)方的联系,会用计算器求平方根与立方根,了解无理数和实数的概念,实数与数轴的对应关系。
过程目标:
经历从有理数到实数的扩展,体验实数与数轴上的点一一对应,探究用实数运算解决一些简单的实际问题。
情感目标:
运用实际例子帮助学生了解这些抽象概念的实际意义,学会用数形结合的数学思想解决问题。
教学重点:
平方根、算术平方根、立方根的概念与表示,会用计算器求平方根与立方根。
教学难点:
实数与数轴的对应关系,探究用实数运算解决一些简单的实际问题。
教学过程:
一、知识回顾:(通过填空,梳理知识系统)
1、如果一个数的____等于a,那么这个数叫做a的平方根(也叫做二次方根)
一个正数a有___个平方根,正平方根用___表示,负平方根用___表示,零的平方根是___,____没有平方根。求一个数的平方根运算叫做____。
2、正数的___平方根和___平方根,统称算术平方根。一个数a(a≥0)的算术平方根记做____。
3、一个数的立方等于a,那么这个数叫做a的___根(也叫做a的三次方根),记做____。一个正数有一个___的立方根,一个负数有一个___的立方根,零的立方根是___。
4、_________________叫做无理数,有理数和无理数统称_______。
5、在数轴上表示的两个实数,____的数总比____的数大。
二、练一练:(学生抢答,培养学生的数学思维)
1、下列各数有没有平方根?并说明理由。
2、已知某数的一个平方根为,求这个数和它的另一个平方根。
3、求图中阴影正方形的面积和边长。
4、一个立方体的体积是125,它的棱长是多少?
三、应用:(学生先小组讨论,再个别发言)
把一个长、宽、高分别为50cm,8cm,20cm的长方体铁块锻造成一个立方体铁块,问锻造成的立方体铁块的棱长是多少?
四、想一想:(学生口答,巩固概念)
(让学生动手画,培养学生的发散思维,和对知识的迁移能力)
(培养学生的探究能力,用数学思维方式来解决实际问题)
我今天讲课的内容人教版七(下)数6.3“实数”第一课时,下面,我将从以下几个方面对这节课的设计进行说明。
一、教材分析
1、教材的地位和作用
本节课是在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数范围。从有理数到实数,这是数的范围的一次重要扩充。对今后学习数学有重要意义。
2、教学目标:(根据新课程标准的要求,结合本节教材的特点,以及学生的认知规律,制定如下目标)。
知识与技能:
1了解无理数和实数的概念以及实数的分类。
2知道实数与数轴上的点具有一一对应关系。
过程与方法:
1经历对实数进行分类的过程,发展学生的分类意识。
2经历从有理数逐步扩充到实数的过程,了解人类对数的认识
不断发展情感态度与价值观:
1通过了解数系扩充体会数系扩充对人类发展的作用。
2敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
3、教学重点、难点
重点:了解无理数和实数的概念;实数的分类。难点:对无理数的认识。
二、学情分析
在学习本节课前,学生已掌握对一个非负数开方运算。课本对学生掌握实数要求不高。只要求学生了解无理数和实数的意义。但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。本节主要引导学生熟知实数的概念和意义,为后面学习打下基础。
三、教法学法分析:
教法分析:为了更好的把握教学内容的整体性、连续性,我采用问题情境导入法引入新课,用类比归纳法和探究分析法展开数学活动。在教学中注重学生的自主探究能力的培养,使学生经历:观察、比较、交流、归纳、反思等理性思维的基本过程。
学法分析:为了有效地突出重点、突破难点,本节课采用以学生自主探究、小组合作交流为主的学习方式,启发学生进行观察、类比、分析,让学生多动手动脑,积极参与到概念的建立,问题求解当中来,使学生的主观能动性得到最大程度的发挥。
四、教程分析:
针对本节教材的特点,我把教学过程设计为以下四个环节:
最后,我说下教学评价分析:
本节课的设计,我根据学生已有的生活知识经验,通过自主学习得到“实数”概念,在“合作交流”中加深对实数概念的理解。在教学活动中,教师应注重学生的个体差异,适时调整教学过程,激发学生的学习兴趣和求知欲,培养他们科学的探索精神和创新精神。
以上是我对本节课的初浅认识,不足之处敬请各位专家批评、指正,谢谢!
一、说教材
本节课是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》的第六节内容。在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。本节课的教学目标是:
知识与能力
1.了解实数的概念和意义,能对实数按要求进行分类;了解实数和数轴上的点是一一对应的.
2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.
过程与方法
1.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。
2.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
情感态度与价值观
通过探索发现,增强学习数学的兴趣,培养学习的主动性,增强克服困难的勇气。
教学重点
1.了解实数意义,能对实数进行分类;
2.在实数范围求相反数、倒数和绝对值、明确实数的运算规律;
3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。教学难点
理解实数与数轴上的点一一对应
二、说学生
本人任教班级的学生基础比较扎实,学习积极性高,求知欲、表现欲强,具有一定的独立思考和探究的能力.
三、说教法
根据本节课的教学内容和学生的实际水平,我采用的是引导发现法和多媒体辅助教学。
(1)引导发现法是通过教师的引导、启发,调动学生参与教学活动的积极性,充分发挥教师的主导作用和学生的主体作用。在教学中通过设置疑问,创设出思维情境,然后引导学生动脑、动手,使学生在开放、民主、和谐的教学氛围中获取知识,提高能力,促进思维的发展。
(2)借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的。(这也符合教学论中的直观性原则和可接受性原则。)
(3)教具:三角板、多媒体。
四、说学法
古人说得好,“授人以鱼,只供一饭;教人以渔,终身受用”,我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习、享受学习。因此,在本节课的教学中引导学生“仔细看、动脑想、多交流、勤练习”的学习,加大学生的参与机会,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们“会观察”、“会类比”、“会分析”、“会归纳”的能力。
五、说教学过程
本节课我先引导学生回顾本章有理数的定义及分类,为进一步学习引入无理数后数的范围的扩充作准备。学生通过主动思考并积极回答,相互补充完善了旧知识的复习,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。通过举例明确了无理数的表现形式,为后续判断或者对实数进行分类提供了认知准备。
通过一个例题学生动手填写对有理数和无理数分类,并进行小组交流讨论,对带根号的数是否是无理数有了进一步认识。然后请学生代表发表意见,适当地集中学生的观点,并逐步将其归纳。
接下来学生类比有理数中相关概念,体会到了实数范围内的相反数、倒数、绝对值的意义,并进一步掌握了实数的相反数、倒数、绝对值等知识。
学生类比有理数中相关运算,体会到了实数范围内的运算及运算律。并探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小。
然后通过相关练习,检测学生对实数相关知识的掌握情况。最后学生交流,互相补充,完成本节知识的梳理。
布置作业:所布置作业都是紧紧围绕着“实数”的概念及运用。设计选作题是为了给学有余力的学生留出自由发展的空间。
六、教学评价
实数的概念;实数与数轴上的点一一对应;实数的分类是本节课的重点,而实数的有关知识对后续的学习又显得尤为重要,因此本节课中教师的课前准备与课堂组织显得非常重要。在教学过程中,通过创设问题情境,积极引导、启发学生探索思考,使学生学会学习、学会探索、学会研究。同时,借助设计制作的多媒体课件辅助手段,极大地提高了课堂教学效益。学生是课堂的主人,本节课中,学生在教师创设的情境下,自主探索,合作交流,积极参与课堂教学,主动构建新的认知结构,他们学习的积极性得到充分发挥,因此学生的主体地位也得到很好地保证。
七、说板书设计
我将板书设计为“提纲式”。这样设计主要是力求重点突出,能加深学生对重点知识的理解和掌握,便于记忆。
第二章实数的教学设计反思
本节课是八年级上册第二章《平方根》的第二课时.主要知识是平方根的学习和运用.教材是教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整.
(一)注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的.所以在学习平方根的概念时,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的经验不符.对此,在平方根的引入时,可多提一些具体的问题.如“9的算术平方根是3,也就是说,3的平方是9.还有其他的`数,它的平方也是9吗?”等等,旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念.再让学生去讨论 一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,然后通过具体的求平方根的练习,巩固新学的概念.
(二)鼓励学生进行探究和交流 本节课为学生提供了有趣而富有数学含义的问题,让学生进行充分的探索和交流.如 把正方形的面积不断的扩大为2倍、3倍、n倍,来引导学生充分进行交流、讨论与探索等数学活动,从中感受学习平方根的必要性.
(三)设计之中多处运用类比的方法,使学生清楚新旧知识的区别和联系.类比概念 “平方根”和“算术平方根”的区别和联系,“平方”和“开平方”运算.
(四)根据学生实际,灵活使用教材
教材上只安排了一道例题和几个想一想,为了让学生对新知巩固,我增加了部分练习题,围绕“平方根”这一知识点进行各种题型的变式练习.当然,选题要有层次,有梯度.老师们在进行教学时可以根据学生的实际情况作适当的取舍.
(五)建议
根据知识结构的逻辑关系与学生的认知规律,建议教材在内容安排上平方根置于算术平方根之前.
【微语】在这个狭小的圈子里,有些人要进来,就有一些人不得不离开。