培训啦 考试资料 > 教学设计

质数和合数教学设计(集锦15篇)

教培参考

教育培训行业知识型媒体

发布时间: 2024年11月24日 20:38

质数和合数教学设计(1)

教学目标:

1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。

2、培养学生观察、比较、概括和判断能力。

3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩*唯物主义的观点。

教学重点:理解质数和合数的意义。

教学难点:判断一个数是质数还是合数的方法。

教学过程:

课前谈话:

给教室里的人分类。体会:同样的事物,依据不同的分类标准,可以有多种不同的分类方法。明确:分类的标准很重要。

一、复习旧知

说一说,在我们学习的空间,你可以得到哪些数?(要求与同学说的尽量不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。

板书对应的*图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的*圈里。

问:看了*图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找约数的方法来给自然数分类。

复习:什么叫约数?怎样找一个数所有的约数?

同桌合作,找出列举的各数的所有的约数。(同时板演)

引导学生观察:观察以上各数所含约数的个数,你能把它们分成几种情况!

根据学生的回答板书。

自然数

(约数的个数)

(只有两个约数)(有3个或3个以上的约数)

引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

明确合数的概念,提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。看了*圈,你想说什么?(学生看图说自己的想法,巩固奇数和合数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,奇数和偶数的个数也是无限的。运用新知,解决问题。

出示例1下面各数,哪些是质数?哪些是合数?

152831537789111

学生*完成。

问:你是怎么判断的?

明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约数,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例1的判断是否正确。

完成练一练。

三、练习巩固

1、检查下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22293549517983

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生*作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

四、全课总结

学到这里,一种新的分类方法,你掌握了吗?学生回答;相机揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是怎样的关系呢?

五、布置作业(略)。

质数和合数教学设计(2)

设计说明

1、引导学生主动探索,促进学生自主学习。

自主学习能力可以说是学生学会求知、学会学习的核心。在学生找20以内各数的因数时,放手让学生自己想办法在最短的时间内找出各数的因数,并在教师的引导下按因数的个数给各数分类,最终得出质数和合数的概念,让学生成为探索家。

2、设计有梯度的练习题,促进学生差异发展。

“因材施教”是教学工作的重要原则,“因材而练”,就是要让不同的学生做不同的练习,真正实现《数学课程标准》中提出的“不同的人在数学上得到不同的发展”目标。因此,本课时在习题的设计上呈现了多样性的原则,让学有余力的学生可以只选择难度较大的习题,学习困难的学生也可以避开那些啃不动的难题,选择基础题和经过努力可以完成的习题。实行同一起点,不同的人达到不同的终点,这样既保护了学生的自信心和自尊心,又调动了学生的主动性和积极性,促进了学生的差异发展。

课前准备

教师准备PPT课件教学过程

教学过程

⊙创设情境,生成问题

同学们,老师在屏幕上出示了自然数1~20,如果把这些数分类,可以怎样分呢?(可以分为奇数和偶数)还可以怎样分呢?这节课我们就来共同探究新的知识。

⊙探索交流,解决问题

1、提问:找出1~20各数的因数。

2、分组讨论。

3、汇报讨论结果。

教师根据学生的汇报板书:

1的因数:1。

2的因数:1,2。

3的因数:1,3。

4的因数:1,2,4。

5的因数:1,5。

6的因数:1,2,3,6。

7的因数:1,7。

8的因数:1,2,4,8。

……

4、提问:你能按照上面各数的因数的个数给这些数分类吗?

有1个因数的数:1。

有2个因数的数:2,3,5,7,11,13,17,19。

有2个以上因数的数:4,6,8,9,10,12,14,15,16,18,20。

(学生可能还会分成有3个、4个、5个、6个因数的,教师可以说明,把有3个、4个、5个、6个因数的数归为一类,统一叫做有2个以上因数的数)

质数和合数教学设计(3)

教学目标:

1、使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。

2、知道100以内的质数,熟悉20以内的质数。

3、培养学生自主探索、独立思考、合作交流的能力。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

教学重点:

质数和合数的意义。

教学难点:

正确判断一个常见数是质数还是合数。

教学时间:

一课时

教学过程:

一、复习旧知,设疑激趣。

师:在刚开始学习倍数和因数时,我们就知道要研究的数是非零的自然数。如果以是不是2的倍数这个标准进行分类,自然数可以分为几类?

师:请手中的数是偶数的`同学站起来,坐着的同学就是什么数?

师:自然数除了按奇偶数进行分类外。我们还可以按自然数的因数个数的多少来进行分类,大家想不想试一试?

二、新授。

1、学习质数和合数的概念。

(1)先让学生找出手中数的所有因数。

(2)出示例题

师:老师先选出几个数,让有这几个数的同学说出这些数的因数。

提问:如果把这6个数按因数个数的多少分成两类,你打算怎样分类?

讨论:哪种分类方法更能突出每类数在因数方面的共同特点?

2、小结:为了突出每一类数在因数方面的特点,我们就把这六个数分为两类:一类是只有两个因数的,另一类是超过两个因数的。

3、揭示定义:请大家仔细观察只有两个因数的数,这两个因数有什么特点?(一个是1,一个是它本身)。自然数中是不是只有这3个数只有两个因数呢?像这样的数,我们给它起个名字叫做质数,也叫做素数。(板书:质数)

剩下这几个数因数的个数是怎样的?和质数的因数有什么不同?(除了1和它本身外还有别的因数)。除了这3个数,看看你们手中的数还有没有这样超过两个因数的数?像这样的数,我们也给它起个名字叫做合数。(板书:合数)

4、揭示课题:这就是今天这节课要学习的内容。

5、分别请手中的数是质数和合数的同学站起来,问:你们有没有观察到,有一个同学两次都没有站起来,知道她手中拿的是什么数吗?这个1有几个因数?它是质数还是合数?

6、这样看来,非零自然数如果按因数的个数分类,你认为应该分成几类?哪几类?

三、教学“试一试”

1、先让学生自己独立完成,然后指名对应数字的同学起来说出答案,并说明理由。

2、提问:你们认为怎样判断一个数是不是质数或者合数?

四、练习:

1、做“练一练”题。

2、做练习六的第1题。

先让学生自己完成,然后齐读剩下的质数。

3、做练习六的`第2题。

五、拓展延伸

1、把迷路的数送回家。(练习六第2题)

2、判断

①所有的质数都是奇数。

②所有的偶数都是合数。

③自然数不是质数就是合数。

④两个奇数相减,差一定是偶数。

⑤两个偶数相加,和一定是合数。

六、课后小结。

学习了关于质数和合数,你们还想研究哪些问题?还有哪些不懂的问题?

七、 板书设计:

质数和合数

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

1不是质数,也不是合数

质数和合数教学设计(4)

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。

2、培养学生自主探索、独立思考、合作交流的能力。

3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。

教学重点:

1、理解掌握质数、合数的概念。

2、初步学会准确判断一个数是质数还是合数。

教学难点:

区分奇数、质数、偶数、合数。

教学过程:

一、探究发现,总结概念:

1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?

学生独立思考,然后全班交流。

2、师:这样的四个小正方形能拼出几个不同的长方形?

学生各自独立思考,想像后举手回答。

3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?

师:我看到许多同学不用画就已经知道了。(指名说一说)

4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的`长方形的个数——,你觉得会怎么样?

学生几乎是异口同声地说:会越多。

师:确定吗?(引导学生展开讨论。)

5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种?什么情况下拼得的长方形不止一种?并举例说明。

先让学生小组讨论,然后全班交流,师根据学生的回答板书。

师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?

学生独立思考后,在小组内进行交流,然后再全班交流。

引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)

6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。

7、师:那你们认为“1”是什么数?

让学生独立思考,后展开讨论。

二、动手操作,制质数表。

1、师出示:73。让学生思考着它是不是质数。

师:要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。(同学们都说“是呀”。)

师:这表从哪来呢?

(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)

2、让学生动手制作质数表。

3、集体交流方法。

三、练习巩固:

完成练习四第1、2题。

四、课题小结:

这节课你在激烈的讨论中有什么收获?

质数和合数教学设计(5)

【教学目标】

一、知识与技能

1.掌握质数和合数的意义。

2.熟记20以内质数,能准确地辩识一个常见自然数是质数还是合数。

3.通过探究质数和合数的意义,培养学生的探究意识和能力。

4.能对现实生活中箱装饮料罐的数字信息作出合理解释。

二、情感、态度与价值观

1.通过实际生活中箱装牛奶的排列方式,感知生活中有数学。

2.在形式多样的练习中,激发学生的学习兴趣。

【教具学具】

CAI课件、题单1张。

【教学过程】

一、生活实例引入

1.观察生活:同学们,我们所喝的液体牛奶通常都是排在长方体的纸箱中。

请你们猜猜看:通常一箱牛奶的总数量会是些什么数?

师:真是这样的吗?老师这里带来了一些箱装的牛奶,大家一起来看一看:每箱共有多少盒?是怎样排列的?用算式表示。

教师根据学生的回答板书在黑板的右侧:

24=4×6

15=3×5

12=3×4

2.实际数量的多种排列方法,分析可行性:

这些数量装在一个长方体纸箱中,还可以怎样排?(学生说出尽可能多的排列方法,老师补充前面板书。)板书:

24=4×6=3×8=2×12=1×24

15=3×5=1×15

12=3×4=2×6=1×12

提问:你觉得哪种排列方式,实际生活中采用的可能性最小?(学生回答后教师在黑板上勾一勾。)

为什么?(不便携带……)

3.比较质疑,引入新课:

现在老师这儿有13盒牛奶,如果将它们排在一个长方体纸箱中,要求每排数量相等,可以有哪些排法?17呢?19呢?(学生思考,同桌说一说,教师板书在黑板左侧)板书:

13=1×13

17=1×17

19=1×19

你还能举出一些这样的数吗?

据学生回答板书,同时说明:像的这样的数还有很多。

二、探究新知

(一)探究质数意义。

1.想一想:为什么右边的数量可以排成多行多列,而左边的数量不能排成多行多列呢?

四人小组讨论(提示:跟这些数的因数的个数有关。仔细观察左边这些数的因数,你发现了什么?)

汇报:(鼓励学生用自己的语言描述)

CAI整理揭示:只有1和它本身两个因数的数叫质数。

强调:质数只有两个因数。

如:13只有1和13两个因数,17只有1和17两个因数:19也只有1和19两个因数;……所以13、17、19……都最质数。

2.再举几个质数,并说明理由。

3.小组合作:找出自然数1—20中有哪些数是质数?

4.学生汇报并说说是怎么找出来的。(学生汇报后CAI出示)

(二)探究合数。

1.用质数判断合数:右边这些数也是质数吗?(不是)为什么?

除了1和它本身还有别的因数;它们至少有几个因数?(3个)

CAI揭示:除了1和它本身,还有别的因数的数,叫合数。

强调:合数至少有3个因数。

2.请你再举几个合数,并说明理由。

3.巩固意义:你觉得判断一个数是质数还是合数的关键是什么?(因数的个数。)

4.谜底揭晓:日常生活中一箱饮料的总数量通常是些什么数?(板书:合数)很少采用什么数?(板书:质数,揭示课题。)

5.小组合作:找出自然数1—20中的合数。

6.学生汇报,老师用CAI出示。

(三)通过观察自然数1—20中的质数和合数,引出“1”:

1.刚才我们用找因数个数的方法,找到了自然数1—20中的质数有多少个?(8个)合数有多少个?(11个)一共有多少个?(19个)还漏掉了哪个数呢?(1)

2.提问:1是质数吗?是合数吗?为什么?

学生充分发表意见后CAI揭示:1只有一个因数,所以它既不是质数,也不是合数。

(四)指导学生看书,勾画重点句。

三、发展练习:CAI辅助演示指导学生完成题单。

1.是的就在对应的表格中画“√”。

1234567891011121314151617181920

奇数

偶数

质数

合数

2.根据1小题填空

(1)最小的奇数是();

(2)最小的质数是();

(3)最小的合数是();

(4)既是偶数又是质数的只有();

(5)20以内既是奇数又是合数的有()。

3.判断下列说法是否正确。

(1)自然数除了质数以外都是合数。()

质数和合数教学设计(6)

一、课前谈话:

师:同学们好,首先自我介绍一下,我姓侯,你们可以叫我什么呢?现在我们要在这里共同上一节数学课,我很想和大家成为朋友。作为朋友,我应该知道每个同学的名字。可是我又不能一下子把全班同学的名字全记住。于是,我想了一个好办法,那就是暂时先用学号来代替名字,这个办法可以吗?

学生回答(好)。

师:从左边起第一位同学为1号,向右依次为2号、3号…下面请同学们把自己的学号报一下,我对数字很感兴趣,看谁能让我先记住。

学生依次报学号。

师:我也是这个集体中的一员了,我就是x号了。

二、复习导入:

师:现在呀我想向同学们重新介绍我自己。我是x号,x是奇数,能被3整除。你们想不想像老师一样介绍一下你自己?谁来介绍?

学生回答,(强调:其它学生要认真倾听,看他们说得对不对。)根据回答中学生报的质数进行提问:它能被谁整除?板书,引导:还有哪位同学的学号也是这种情况,只能被1和这个数本身整除?(学生回答,教师相应板书10个左右质数)

师:谁的学号除了能被1和这个数本身整除以外,还能被别的数整除?(学生回答,教师相应板书10个左右合数)

三、探索新知

1、总结概念

师:那么这两组数都是什么数呢?请同学们看数学书59页的内容,看谁是一个会学习的孩子!

学生看书。

师:好了,我看了同学们看书很认真,那么通过看书你知道了这些数是什么数吗?(指着第一组数)

学生回答质数的概念。(如果不完整,引导:书上是怎么告诉我们的?)

师:同学们回答得很准确,像这样只有1和它本身两个约数,这样的数叫质数(又叫素数)。(教师相应画上椭圆,出示课题:质数。并贴出质数的概念。)

师:那通过看书你知道这些数又是什么数呢?(指着第二组数)

学生回答合数概念。

师:同学们回答得真完整。像这样如果除了1和它本身还有别的约数,这样的数叫做合数。(教师相应画上椭圆,出示课题:合数。并贴出合数的概念。)

师:这就是这节课我们要研究的内容。(手指课题)

下面我们把这两个概念齐读一下。

学生齐读。

师:现在我再向大家介绍一下我自己!我是39号,39除了1和它本身两个约数以外,还有别的约数,所以39是合数。你们也想这样向同学们介绍一下你自己吗?其他同学要认真听!听听他们介绍得对不对。(4、5个同学介绍)还有同学想介绍,那就请同桌两人互相介绍介绍吧!

2、游戏促学:

师:好了,咱们大家的学习兴致可真高!下面我们来做个游戏,学号是1——20的同学请注意,学号是质数的同学请起立,按从小到大的顺序报一下自己的学号。学号是最小的质数的学生请说一句话!

师:学号是合数的同学请起立,按从小到大的顺序报一下自己的学号。最小的合数请说一句话!

师:1——20号的同学,谁一次也没有站起来?你为什么不站呢?

学生回答。

说明:是的,1只有一个约数,所以它既不是质数,也不是合数。

3、认识质数表

师:判断一个数究竟是质数还是合数,除了根据概念去判断以外,还可以查看质数表。(出示100以内质数表)

师:这是一张100以内的质数表,在这里出现有是100以内的什么数?(质数)没有出现的呢?(合数和1)

师:现在请你将这些质数读一读,然后找出20以内的几个质数,并将它们记住。

学生读背。

师:20以内的质数谁背下来了?

学生回答。

师:你们可真聪明,记得这么快!现在我们又多了一个判断质数的方法,当我们运用概念判断有困难时,别忘了可以借助质数表。

师:刚才我们了解了质数与合数的特征,关于质数和合数方面的知识还有很多,谁愿意把你知道的向同学们介绍一下?(个别的问问从哪查到的)

质数和合数教学设计(7)

【教学目标设计】

1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。

2、过程与方法:采用探究式学习法,通过操作、观察自主学习-——提出猜想——合作、交流验证——分类、比较——抽象——归纳总结——巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。

3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。

【教学重点】:理解质数和合数的意义

【教学难点】:判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类

【教具学具准备】:学生每人准备一张学号牌、课件

【教学过程】:

一、课前谈话:快点告诉我你的学号,学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?……

二、引入:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来;哪些人学号是偶数呢?都站过了吗,可见自然数可以怎样分类?分类依据是什么?

三、探究新知:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。

1、写因数。每个同学都有自己的学号对不对,那么请你写出自己学号的所有因数,在写之前请一两个同学说说写因数的方法?说完后然后学生现在开始写因数,就写在学号牌上。(要求:写因数时要求完整、工整、有规律。)

2、交流:请1—12号同学汇报自己学号的所有因数,教师板书。现在请所有同学一起来观察黑板上这些数字的所有因数,看看你发现了什么?

师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?

(全班交流)板书完成:有一个因数:1

有两个因数:2、3、5、7、11、

有两个以上因数:4、6、8、9、10、12

(1)质数

师:先观察只有两个因数的特征,谁能发现:他们的因数有什么特点呢?

(出示:只有1和它本身两个因数)板书

命名:我们给这样的数取名为:质数(或素数)(课件),齐读后特别强调“只有”两字然后个别读,最后再齐读)(一个数,如果只有1和它本身两个因数,这样的数叫做质数。)

再举出几个质数的例子。并让学生说说为什么是质数。举得完吗?说明了什么?(质数有无数个)想一想:最小的质数是几?最大的呢?

(2)合数

师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?

(板书:除了1和它本身以外,还有别的因数)应强调两个以上或至少有三个因数

命名:我们给这样的数取名为:合数。(板书:合数)(课件)齐读概念

所以质数和合数就是我们这节课所要学的内容(板书:质数和合数)

再举出几个合数的例子,然后问为什么。问:举得完吗?说明了什么?(合数也有无数个)想一想:最小的合数是几?最大的呢?

(3)1既不是质数也不是合数

(4)分类:所以按照因数个数的多少,自然数又可以分为哪几类呢?

明确用三分法可以把自然数分为质数和合数以及1三类

13号到27号的同学看看你们手中的因数也就这三类

判断你自己的学号是质数还是合数,悄悄地告诉你的同桌,并告知理由。

(二)动手实践,制作100以内的质数表。

1、51,是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。

2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)

3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!

4、你还有什么发现吗?

质数和合数教学设计(8)

一、引入新课

教师出示一组数:

1、2、5、8、9、12、17

师:这些数根据能不能被2整除,可以怎么分类?

生:可以分成奇数和偶数两类。其中1、5、9、17是奇数,2、8、12是偶数。

师:自然数还有一种分类方法,是按照一个数约数的个数来分类的。先请同学说出这些数每个数的约数。

生1:1的约数是1。

生2:2的约数是1,2。

学生回答后,教师出示卡片(可移动)并贴在黑板上。

1(1)、2(1,2)……

[抽象的数学概念的建立,离不开一定数量的具体实例。教师一上课就出示一组自然数,帮助学生复习自然数的奇偶分类后,让学生说出每一个数的约数,为学生的观察、比较,学习新知,提供了感性材料。]

二、进行新课

(一)教学例1。

1.引导学生自学例1,然后让学生分小组讨论思考题。

师:自然数按照约数的个数怎么分类呢?请同学们带着思考题来学习书上的例1。

出示思考题:

(1)按照一个数约数的多少,可以分为哪几种情况?

(2)一个数只有1和它本身两个约数的,这样的数叫做什么数?

(3)一个数除了1和它本身,还有别的约数的,这样的数叫做什么数?

(4)1是质数还是合数?为什么?

2.回答思考题。

(1)回答思考题(1)。

师:按照每个数约数的多少,可以分为哪几种情况?

生:可以分为三种情况。一种是只有一个约数的,一种是有两个约数的,还有一种是有两个以上约数的。

师:谁能把以上的数,按照约数的多少进行分类?

学生移动卡片:

2(1,2)、8(1,8,2,4)、1(1)

5(1,5)、9(1,9,3)

17(1,17)、12(1,12,3,4,2,6)

(2)回答思考题(2)。

师:像2、5、17这样,只有1和它本身两个约数的数叫做什么数?

生:像2、5、17这样的数叫做质数,也叫做素数。

教师板书:质数(素数)

师:质数有几个约数?

生:质数有两个约数。

师:哪两个约数?

生:1和它本身。(教师板书)

师:自然数中,除了2、5、17外,还有别的质数吗?

生:有。

师:你能举出一个例子来吗?

(三位学生先后回答出:3、7、11,教师板书)

(3)回答思考题(3)。

师:像8、9、12这样,除了1和它本身,还有别的约数的数叫做什么数?

生:像8、9、12这样,除了1和它本身,还有别的约数的数叫做合数。

(教师板书:合数)

师:合数的约数是几个?(两个以上)怎么理解“两个以上”?(至少三个)你能举出一个合数的例子吗?

(三位学生先后回答出:4、6、100,教师板书)

师:一个数除了1和它本身,还有别的约数的,这样的数叫做合数。

师:自然数中,除了黑板上的这些质数和合数外,还有吗?

生:还有很多。

(教师在质数、合数的例子下面写上省略号)

(4)回答思考题(4)。

师:1是质数还是合数?为什么?

生:1既不是质数,也不是合数。因为1只有1一个约数。

师:能不能说,自然数中,不是质数就是合数呢?

生1:能。

生2:不能。因为自然数中的1既不是质数也不是合数。

师:那么,自然数按照约数的个数来分类,应分成几类?

生:分为三类。一类是质数,一类是合数,还有一类是1。

教师根据学生的回答,板书:

质数和合数教学设计(9)

一、引入新课

教师出示一组数:

1、2、5、8、9、12、17

师:这些数根据能不能被2整除,可以怎么分类?

生:可以分成奇数和偶数两类。其中1、5、9、17是奇数,2、8、12是偶数。

师:自然数还有一种分类方法,是按照一个数约数的个数来分类的。先请同学说出这些数每个数的约数。

生1:1的约数是1。

生2:2的约数是1,2。

学生回答后,教师出示卡片(可移动)并贴在黑板上。

1(1)、2(1,2)……

[抽象的数学概念的建立,离不开一定数量的具体实例。教师一上课就出示一组自然数,帮助学生复习自然数的奇偶分类后,让学生说出每一个数的约数,为学生的观察、比较,学习新知,提供了感性材料。]

二、进行新课

(一)教学例1。

1、引导学生自学例1,然后让学生分小组讨论思考题。

师:自然数按照约数的个数怎么分类呢?请同学们带着思考题来学习书上的例1。

出示思考题:

(1)按照一个数约数的多少,可以分为哪几种情况?

(2)一个数只有1和它本身两个约数的,这样的数叫做什么数?

(3)一个数除了1和它本身,还有别的约数的,这样的数叫做什么数?

(4)1是质数还是合数?为什么?

2、回答思考题。

(1)回答思考题(1)。

师:按照每个数约数的多少,可以分为哪几种情况?

生:可以分为三种情况。一种是只有一个约数的,一种是有两个约数的,还有一种是有两个以上约数的。

师:谁能把以上的数,按照约数的多少进行分类?

学生移动卡片:

2(1,2)、8(1,8,2,4)、1(1)

5(1,5)、9(1,9,3)

17(1,17)、12(1,12,3,4,2,6)

(2)回答思考题(2)。

师:像2、5、17这样,只有1和它本身两个约数的数叫做什么数?

生:像2、5、17这样的数叫做质数,也叫做素数。

教师板书:质数(素数)

师:质数有几个约数?

生:质数有两个约数。

师:哪两个约数?

生:1和它本身。(教师板书)

师:自然数中,除了2、5、17外,还有别的质数吗?

生:有。

师:你能举出一个例子来吗?

(三位学生先后回答出:3、7、11,教师板书)

(3)回答思考题(3)。

师:像8、9、12这样,除了1和它本身,还有别的约数的数叫做什么数?

生:像8、9、12这样,除了1和它本身,还有别的约数的数叫做合数。

(教师板书:合数)

师:合数的约数是几个?(两个以上)怎么理解“两个以上”?(至少三个)你能举出一个合数的例子吗?

(三位学生先后回答出:4、6、100,教师板书)

师:一个数除了1和它本身,还有别的约数的,这样的数叫做合数。

师:自然数中,除了黑板上的这些质数和合数外,还有吗?

生:还有很多。

(教师在质数、合数的例子下面写上省略号)

(4)回答思考题(4)。

师:1是质数还是合数?为什么?

生:1既不是质数,也不是合数。因为1只有1一个约数。

师:能不能说,自然数中,不是质数就是合数呢?

生1:能。

生2:不能。因为自然数中的1既不是质数也不是合数。

师:那么,自然数按照约数的个数来分类,应分成几类?

生:分为三类。一类是质数,一类是合数,还有一类是1。

教师根据学生的回答,板书:

质数和合数教学设计(10)

教学内容:

质数和合数

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类、

2、培养学生细心观察、全面概括、准确判断、自主探索、独立思考、合作交流的能力。

教学重点:

能准确判断一个数是质数还是合数、

教学难点:

找出100以内的质数、

教学过程:

一、复习导入(加深前面知识的理解,为新知作铺垫)

下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数、

3和154和2449和791和13(指名回答。)

二、小组合作学习质数和合数的的概念。

全班分两组探讨并写出1--20各数的因数。

1、观察各数因数的个数的特点。

2、填写表格。

只有一个因数

只有1和它本身两个因数

除了1和它本身还有别的因数

3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这样的数叫做合数。(板书:质数和合数)

4、举例。

你能举一些质数的例子吗?

你能举一些合数的例子吗?

5、小练习:最小的质数是几?最小的合数是几?质数有多少个因数?合数至少有多少个因数?

6、探究“1”是质数还是合数。

刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)

引导学生明确:1既不是质数也不是合数。

7、小练习:自然数中除了质数就是合数吗?

三、给自然数分类。

1、想一想

师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把自然数分为哪几类?

生:质数,合数,0。

2、说一说

知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?

引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数;如果有两个以上因数,这个数就是合数。

四、师生学习教材24页的例1。

老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。

1、师引导学生找出30以内的质数。

提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)

(特殊记忆20以内的质数,因为它常用。)

2、小组探究100以内的质数。

3、汇报100以内的质数。师生共同整理100以内的质数表。

4、应用100以内质数表:

5、小练习:

(1)所有的奇数都是质数吗?

(2)所有的偶数都是合数吗?

五、思维训练。

有两个质数,它们的和是小于100的奇数,并且是17的倍数,求这两个数。

六、课堂小结。

这节课你学会了什么?什么叫质数?什么叫合数?你会判断质数和合数吗?判断的关键是什么?

质数和合数教学设计(11)

教学内容:

质数和合数

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数的个数进行分类、

2、培养学生细心观察、全面概括、准确判断、自主探索、独立思考、合作交流的能力。

教学重点:

能准确判断一个数是质数还是合数、

教学难点:

找出100以内的质数、

教学过程:

一、复习导入(加深前面知识的理解,为新知作铺垫)

下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数、

3和154和2449和791和13(指名回答。)

二、小组合作学习质数和合数的的概念。

全班分两组探讨并写出1——20各数的因数。

1、观察各数因数的个数的特点。

2、填写表格。

只有一个因数

只有1和它本身两个因数

除了1和它本身还有别的因数

3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这样的数叫做合数。(板书:质数和合数)

4、举例。

你能举一些质数的例子吗?

你能举一些合数的例子吗?

5、小练习:最小的质数是几?最小的合数是几?质数有多少个因数?合数至少有多少个因数?

6、探究“1”是质数还是合数。

刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)

引导学生明确:1既不是质数也不是合数。

7、小练习:自然数中除了质数就是合数吗?

三、给自然数分类。

1、想一想

师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把自然数分为哪几类?

生:质数,合数,0。

2、说一说

知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?

引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数;如果有两个以上因数,这个数就是合数。

四、师生学习教材24页的例1。

老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。

1、师引导学生找出30以内的质数。

提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)

(特殊记忆20以内的质数,因为它常用。)

2、小组探究100以内的质数。

3、汇报100以内的质数。师生共同整理100以内的质数表。

4、应用100以内质数表:

5、小练习:

(1)所有的奇数都是质数吗?(2)所有的偶数都是合数吗?

五、思维训练。

有两个质数,它们的和是小于100的奇数,并且是17的倍数,求这两个数。

六、课堂小结。

这节课你学会了什么?什么叫质数?什么叫合数?你会判断质数和合数吗?判断的关键是什么?

质数和合数教学设计(12)

教学目标 :

1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。

2、培养学生观察、比较、概括和判断能力。

3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。

教学重点:理解质数和合数的意义。

教学难点 :判断一个数是质数还是合数的方法。

教学过程 :

课前谈话:

给教室里的人分类。体会:同样的事物,依据不同的分类标准,可以有多种不同的分类方法。明确:分类的标准很重要。

一、复习旧知

说一说,在我们学习的空间,你可以得到哪些数?(要求与同学说的尽量不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。

板书对应的集合图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的集合圈里。

问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找约数的.方法来给自然数分类。

复习:什么叫约数?怎样找一个数所有的约数?

同桌合作,找出列举的各数的所有的约数。(同时板演)

引导学生观察:观察以上各数所含约数的个数,你能把它们分成几种情况!

根据学生的回答板书。

自然数

(约数的个数)

(只有两个约数)(有3个或3个以上的约数)

引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

明确合数的概念,提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。看了集合圈,你想说什么?(学生看图说自己的想法,巩固奇数和合数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,奇数和偶数的个数也是无限的。运用新知,解决问题。

出示例1  下面各数,哪些是质数?哪些是合数?

15     28     31     53     77      89      111

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约数,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例1的判断是否正确。

完成练一练。

三、练习巩固

1、检查下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22  29  35  49  51  79   83

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生操作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

四、全课总结

学到这里,一种新的分类方法,你掌握了吗?学生回答;相机揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是怎样的关系呢?

五、布置作业 (略)。

质数和合数教学设计

质数和合数教学设计(13)

教学内容:九年义务教育五年制小学数学质数合数。

教学目标 : 1. 培养学生自主探索、独立思考、合作交流的能力。

2.培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。

3. 理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。

教学过程 :

活动一:以新闻引入

活动目的:创设情境,激发学生主动探索的欲望.

活动过程 :

刚才大家提起“歌德巴赫猜想”,贾老师也很感兴趣,而且一直在搜集这方面材料,点击课件, 很巧前一段有这样的报道-----小时候就听说有人把“歌德巴赫猜想”比做数学王冠上的明珠,点击课件,今天竞有人悬赏100万美元求征“歌德巴赫猜想之解” ,歌德巴赫猜想到底是什麽呀?有兴趣看看吗?点击课件

出示:大于4的偶数总能写成两个奇素数之和。

师: 谁来读一下.著名的哥德巴赫猜想.生读.

师:就这样一句话呀。你读懂了吗?你读懂什麽啦?

生:大于4的偶数 能举个例子吗?       6、8、10……

奇数:什麽是奇数?

素数(质数): 什么样的数是质数?

师:哦你们是这样理解的.看来质数与约数有直接关系。你从那知道的?

教学反思: 这样的教学,使学生悬念顿生,兴趣盎然,思维处于欲罢不能的愤悱状态。此时教师巧妙地把握住时机,导入  新课。这样从新闻入手,激发了全体学生的兴趣,使课堂气氛顿时活跃起来.为本节课的顺利实施提供了有效的条件。

活动二: 理解质数合数的意义

活动目的: 让学生自己去经历观察、实验、猜想、证明等数学活动的过程,发展合情推理能力,初步的演绎思维能力及解决问题的能力。

活动过程 :

1、 认识质数

.师:看来你们对这个猜想已经初步理解了,我们能试着写一个符合这个猜想的式子吗。

生:8=3+5   3、5是奇数吗?是质数吗?

10=11+3  3、11是奇数吗?是质数吗?

14=7+7  同意吗?为什么?

师:都有兴趣举,拿出本来,看谁举的多。

生:举例。你举了几个.师把最多的式子板书黑板.

师:还有补充吗?

师:我们按照自己对“哥德巴赫猜想”的理解写出了这些式子,是否都符合这个猜想呢?

师:符号右边都是奇数吗?都是质数吗?质数有什么共同特点?

生:除了1和它本身不再有其他约数的数叫质数。

师:能举出一个质数吗?5 是质数,为什麽?17是质数,为什么?

师:都想举拿出本举看谁举得多?四人交流一下。

师:生汇报。这些数都是质数,到底什么是质数。板书:质数

2、认识合数。

.师:9这个数为什么不是质数?我们把这样的数叫什麽数。

生:合数,为什么?

师:谁能再举一个合数。什么是合数?板书:合数.

3、今天我们学习了质数和合数.板书课题:质数 合数有问题吗?

4、判断数字卡片是质数还是合数?

出示:5、9 为什么?

抢答:3、19、49、63、47、39、121、2、1、31、5730……

师:2为什么是质数?1为什么不是质数也不是合数?

教学反思: 教师在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时教师也把自己当作学习者,与学生一道共同完成学习任务。当时的课堂气氛和谐、民主。收到了良好的效果。

活动三:学生自己选择要研究的问题进行活动。

活动目的:教师要主动把课堂教学活动的主角位置让给学生,把课堂教学活动的时间多分给学生使用,把课堂教学活动的内容多留给学生处理解决,教师做好组织、设计、指导或点拨,主导者要让贤于主体者,采用这一教法,可让学生认识“自我”,感受到“自我”的价值。爱因斯坦说过:“提出一个问题比解决一个问题更重要。”

活动过程 :

1.你还想研究质数合数的那些知识?(学生提出很多)

如:(1)找最大质数.

(2)如何判断一个数是质数还是合数.

(3)自然数中是不是除了质数就是合数……

2.请各小组选一个你们喜欢研究的问题,开始研究吧.

3.汇报研究成果.

教学反思: 教师在课后设计了这样一个环节,你还想研究质数、合数有关的那些知识。这一过程,教师充分让位还权,放手让学生去探究,留足学生探究的时间与空间,关注有差异的学生去发现,去完成自己的学习目标,使每个学生都积极参与“做”数学,能在课上研究的问题就在课上处理,留下的问题让学生向家长、老师、书籍、网络……学习,这样设计已经不只局限于使学生理解、掌握知识,更多关注的是培养学生探究知识能力,着眼学生的可持续发展。体现出学生学习的主体参与意识,此环节的处理,虽然耽误了一些时间, 但我想还是值得的.教师应以学生为本,而不应以备好的教案为本.

活动四:回到开头。

活动目的: 教师本着以人的发展为本的教学理念,着眼于学生的'可持续发展.

活动过程 :

1.我们学习了质数和合数,对于哥德巴赫猜想中的奇素数你是怎么理解的?点击课件出示:大于4的偶数总能写成两个奇素数之和。

师:是不是所有一个尽可能大的偶数总能写成两个奇素数之和呢?能证明吗?

师:虽然我们现在还不能证明?但是通过这节课我们对哥德巴赫猜想的理解和我们之间的交流。你们是不是已经感受到了数学王国的神秘。

2.著名科学家牛顿曾说过这样一句话:我之所以取得今天的成绩,是因为我站在巨人肩膀上的缘故。同学们其实你们已经站在巨人肩膀上研究问题啦。这使我坚信,在不久的将来,在座的各位通过不懈的努力,将来肯定会有人摘下这颗数学王冠上的明珠,解开“哥德巴赫猜想。

教学反思:当时学生举手非常踊跃,表现出一种探索的欲望, 敢于探索科学之谜的精神,充分展示出了数学自身的魅力。

六、板书:略。

教学反思:

一  新课程标准中指出;“让学生经历数学知识的形成与应用过程。”数学学习过程的实质是现实世界各种数量关系内化上升为形式化的过程。数学知识本身的特点决定了“数学教育的主要活动是思想实验。” 为此, 数学教师应充当教练的角色,面向全体学生,因材施教,以千差万别的方式练就千差万别的学生,从而实现“人人学有价值的数学”;“人人都能获得必须的数学”;“不同的人在数学上得到不同的发展”;

1.创设情境是落实新课程标准的重要措施。

新课程标准就数学学习方式提出如下建议:数学教学应“从学生的生活经验和已有知识背景出发,想他们提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识技能,数学思想和方法,同时获得广泛的数学活动经验。”

有人说:“你拉来一批马给它喝水,不如让他感到口渴。”在讲“质数、合数”这节课时。我沿着新课程标准的理念设计安排了这样的导入  :“教师叙述,2002年3月20日北京日报第九版有这样的报道:英美两家出版社悬赏100万美元,限期两年求证歌德巴赫猜想之解,截稿日期就是今天。”……随着上述情境的不断展开,学生悬念顿生,兴趣盎然,思维处于欲罢不能的愤悱状态。此时教师巧妙地把握住时机,导入  新课。这样从新闻入手,让学生感到口渴,学的知识有用,同时也感受到了数学自身的魅力。对数学随之充满了无限的兴趣,为本节课的顺利实施提供了有效的条件。

2.教师的鼓励为学生体验成功搭设了舞台。

成功与快乐是学习的一种巨大的情绪力量,教师不失时机的积极鼓励,能使学生产生学好数学的强烈欲望.因此,教师要对学生任何成功的言行都要给予及时、明确和积极的强化。如微笑、点头、重复和阐述学生的正确答案。至于学生的一些错误反应,应该鼓励学生继续努力。可以对学生说:“有进步,谁能再补充一下?” 在讲“质数、合数”这节课,教师在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时教师也把自己当作学习者,与学生一道共同完成学习任务。如:“你们的例子都举对了吗?同桌互相检查一下,你们听明白他的意思了吗?谁愿意再给大家说一遍?就用他的方法试一试?等,看似简简单单的几句话,教学民主却随处可见。”又如“在学生看过歌德巴赫猜想内容后,教师问你懂吗?学生说“我知道素数”教师及时评价:你还知道素数那,真了不起。你从哪知道的?学生说书上看的。教师评价:从你的言谈举止就看出了你是个爱读书的学者。等等。由于采用了新课程标准的理念,让学生充分体验了成功的喜悦。

3.学生的体验为探索与创造提供了可持续性发展的条件。

爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在教学“质数、合数”这节课时,教师在课后设计了这样一个环节,你还想研究质数、合数有关的那些知识。这一过程,教师充分放手让学生去探究,留足学生探究的时间与空间,关注有差异的学生去发现,去完成自己的学习目标,使每个学生都积极参与“做”数学,能再课上研究的问题就在课上处理,留下的问题让学生向家长、老师、书籍、网络……学习,这样设计已经不只局限于使学生理解、掌握知识,更多关注的是培养学生探究知识能力,着眼学生的可持续发展。在这一过程中,当学生碰到困难时,教师是启发者,当学生迷路时,教师是指导者,当学生获得成功时,教师则是鼓励者。由于学生在数学活动中获得了成功的体验,有机会接触、了解、钻研自己感兴趣的数学问题,最大限度的满足了每一个学生数学学习的需要,让不同的人在数学上得到了不同的发展。

本节课中我本着以人的发展为本的教学理念,着眼于学生的可持续发展,注重教学目标 的多元化,在价值目标取向上不仅仅局限于学生获得一般的解决知识技能,更重要的是让学生在数学学习过程中感受到数学自身的魅力,获得数学的基本思想,了解数学的价值,体验问题解决的过程。

质数和合数教学设计及评析

质数和合数教学设计(14)

质数和合数的教学设计范文

教学目标:

1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。

2、培养学生观察、比较、概括和判断能力。

3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。

教学重点:理解质数和合数的意义。

教学难点:判断一个数是质数还是合数的方法。

教学过程:

课前谈话:

给教室里的人分类。体会:同样的事物,依据不同的分类标准,可以有多种不同的分类方法。明确:分类的标准很重要。

一、复习旧知

说一说,在我们学习的空间,你可以得到哪些数?(要求与同学说的尽量不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。

板书对应的集合图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的集合圈里。

问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找约数的方法来给自然数分类。

复习:什么叫约数?怎样找一个数所有的约数?

同桌合作,找出列举的各数的所有的约数。(同时板演)

引导学生观察:观察以上各数所含约数的个数,你能把它们分成几种情况!

根据学生的回答板书。

自然数

(约数的个数)

(只有两个约数)(有3个或3个以上的约数)

引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

明确合数的概念,提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。看了集合圈,你想说什么?(学生看图说自己的想法,巩固奇数和合数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,奇数和偶数的个数也是无限的。运用新知,解决问题。

出示例1下面各数,哪些是质数?哪些是合数?

152831537789111

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约数,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的.质数比较常用,看书本上的100以内的质数表。用质数表检查对例1的判断是否正确。

完成练一练。

三、练习巩固

1、检查下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22293549517983

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生操作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

四、全课总结

学到这里,一种新的分类方法,你掌握了吗?学生回答;相机揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是怎样的关系呢?

五、布置作业(略)。

质数和合数教学设计(15)

五年级数学下册《质数和合数》教学设计

教学内容:质数和合数(教材第23、24面、25面)

教学目标:

1、使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。

2、知道100以内的质数,熟悉20以内的质数。

3、培养学生自主探索、独立思考、合作交流的能力。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

教学重点:质数和合数的意义。

教学难点:正确判断一个常见数是质数还是合数。

教学过程:

一、创设情境,激趣导入

1、同学们,听说过“歌德巴赫猜想”吗?这是一个著名的数学难题,被称为“数学王冠上的明珠”。

2、课件显示:任何大于2的偶数都可以写成两个质数的和。

3、这就是著名的.“歌德巴赫猜想”。要想解决这个问题,首先就要知道什么是“质数”。你们知道什么样的数是质数吗?引导学生积极思考,并在此基础上导入新课学习。下面,我们来一起观察。

二、反馈预习,探索研究

1、学习质数和合数的概念。

找出1—20各数的因数。看看它们的因数的个数有什么规律。

(1)初步观察:

组织学生一个一个地给这些数找因数并请写出1—20各数的因数。

每个数的因数的个数是否完全相同?

按照每个数的因数的多少,可以分几种情况?

可分为三种情况:(让学生填)

只有一个因数

只有1和它本身两个因数

有两个以上的因数

1

2、3、5、7、11、13、17、19

4、6、8、9、10、12、14、15、16、18、20

(2)观察思考:

只有两个因数的,如:2、3、5、7、11、13、17、19。这几个数的因数有什么特征?

4、6、8、9、10、12、14、15……这些数的因数与上面的数的因数相比有什么不同?

分成小组讨论交流,并汇报讨论结果。教师归纳:

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

一个数,如果除了1和它本身两个因数外还有别的因数,这样的数叫做合数。

注意:1既不是质数,也不是合数。

2、质数、合数的判断方法。

问题:我们应该怎样去判断一个数是质数还是合数?

学生思考,讨论交流并汇报。(根据因数的个数来判断)

(1)完成教材第23面“做一做”。

(课件显示)“做一做”:判断下列各数中哪些是质数,哪些是合数?

17 22 29 35 37 87 93 96

(2)提问:你是怎样判断的?(找出每个数的因数的个数)

(3)提问:判断是质数还是合数,是不是把所有的因数都找出来呢?(不必要,只要发现这个数除了1和本身以外还有其它的因数,不管有几个,它都是合数)

3、课件显示教材第24面例题1:找出100以内的质数,做一个质数表。

(1)提问:如何很快的制作一张100以内的指数表?

(2)按质数的概念逐个判断?也可以用筛选法。

(3)介绍筛选法:首先排除1,因为1既不是质数,也不是合数。再排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的所有5的倍数,最后排除7以外的7的倍数。这样剩下的就是100以内的质数。

课件演示筛选过程,并最终显示:100以内的质数。(略)小结:判断一个数是不是质数,除了用刚才介绍的方法外,还可以查质数表判断,如100以内的质数表。

三、巩固练习:

1、完成教材第25面第2、3两题

2、学生完成后集体讲评。

第3题:质数+质数=10,质数×质数=21,分析:这两个质数一定小于10,10以内的质数有2,3,5,7,通过观察可知,只有3和7。

同样,质数+质数=20,质数×质数=91,只有3+17=20和7+13=20,而积是91的只有7和13。

四、课堂总结:

师生共同总结以下内容:

1、什么叫质数?什么叫合数?它们之间最大区别是什么?

2、可以用哪些方法判断质数和合数?

3、你还知道些什么?从中掌握了哪些学习方法?

板书设计

质数和合数

一个数,如果只有1和它本身两个因数,这样的数叫做质数。

一个数,如果除了1和它本身两个因数外还有别的因数,这样的数叫做合数。

注意:1既不是质数,也不是合数。

作业设计

完成教材第26面(练习四)第4、5两题

教学心得

【微语】在自己热爱的世界里,努力成为那道光。

985大学 211大学 全国院校对比 专升本 美国留学 留求艺网

温馨提示:
本文【质数和合数教学设计(集锦15篇)】由作者教培参考提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号 美国留学 留求艺