培训啦 考试资料 > 教学设计

分式方程教学设计(通用7篇)

教培参考

教育培训行业知识型媒体

发布时间: 2024年11月23日 08:11

分式方程教学设计(1)

教学目标

1。使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;

2。通过列分式方程解应用题,渗透方程的思想方法。

教学重点和难点

重点:列分式方程解应用题。

难点:根据题意,找出等量关系,正确列出方程。

教学过程设计

一、复习

例 解方程:

(1)2x+xx+3=1; (2)15x=2×15 x+12;

(3)2(1x+1x+3)+x-2x+3=1。

解 (1)方程两边都乘以x(3+3),去分母,得

2(x+3)+x2=x2+3x,即2x-3x=-6

所以 x=6。

检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

(2)方程两边都乘以x(x+12),约去分母,得

15(x+12)=30x。

解这个整式方程,得

x=12。

检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

(3)整理,得

2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

即 2x+xx+3=1。

方程两边都乘以x(x+3),去分母,得

2(x+3)+x2=x(x+3),

即 2x+6+x2=x2+3x,

亦即 2x-3x=-6。

解这个整式方程,得 x=6。

检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

二、新课

例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?

请同学根据题意,找出题目中的等量关系。

答:骑车行进路程=队伍行进路程=15(千米);

骑车的速度=步行速度的2倍;

骑车所用的时间=步行的时间-0。5小时。

请同学依据上述等量关系列出方程。

答案:

方法1 设这名学生骑车追上队伍需x小时,依题意列方程为

15x=2×15 x+12。

方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为

15x-15 2x=12。

解 由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程。

方程两边都乘以2x,去分母,得

30-15=x,

所以 x=15。

检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意。

所以骑车追上队伍所用的时间为15千米 30千米/时=12小时。

答:骑车追上队伍所用的时间为30分钟。

指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离 时间。

如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按

速度找等量关系列方程,所列出的方程都是分式方程。

例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成。现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?

分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是

s=mt,或t=sm,或m=st。

请同学根据题中的等量关系列出方程。

答案:

方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3。依题意,列方程为

2(1x+1x3)+x2-xx+3=1。

指出:工作效率的意义是单位时间完成的工作量。

方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程

2x+xx+3=1。

方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程

1-2x=2x+3+x-2x+3。

用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了。重点是找等量关系列方程。

三、课堂练习

1。甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数。

2。A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知大、小汽车速度的.比为2:5,求两辆汽车的速度。

答案:

1。甲每小时加工15个零件,乙每小时加工20个零件。

2。大,小汽车的速度分别为18千米/时和45千米/时。

四、小结

1。列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根。一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意。原方程的增根和不符合题意的根都应舍去。

2。列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数。但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数。在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷。例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程

135 x+5-12:135x=2:5。

解这个分式方程,运算较繁琐。如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了。

五、作业

1。填空:

(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;

(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;

(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克。

2。列方程解应用题。

(1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时。已知他第二次加工效率是第一次的2。5倍,求他第二次加工时每小时加工多少零件?

(2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?

(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?

(4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知两车的速度之比是5:2,求两辆汽车各自的速度。

答案:

1。(1)mn m+n; (2)m a-b-ma; (3)ma a+b。

2。(1)第二次加工时,每小时加工125个零件。

(2)步行40千米所用的时间为40 4=10(时)。答步行40千米用了10小时。

(3)江水的流速为4千米/时。

分式方程教学设计(2)

教学目标

1、知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。

2、过程与方法

经历探索一次函数的应用问题,发展抽象思维。

3、情感、态度与价值观

培养变量与对应的思想,形成良好的'函数观点,体会一次函数的应用价值。

重、难点与关键

1、重点:一次函数的应用。

2、难点:一次函数的应用。

3、关键:从数形结合分析思路入手,提升应用思维。

教学方法

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。

教学过程

一、范例点击,应用所学

例5、小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。

例6、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

二、随堂练习,巩固深化

课本P119练习。

三、课堂总结,发展潜能

由学生自我评价本节课的表现。

四、布置作业,专题突破

课本P120习题14.2第9,10,11题。

分式方程教学设计(3)

教学目标:

1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。

2、使学生掌握运用去分母或换元的方法解可化为一元二次方程的分式方程;使学生理解转化的数学基本思想;

3、使学生能够利用最简公分母进行验根。

教学重点:

可化为一元二次方程的分式方程的解法。

教学难点:

教学难点:解分式方程,学生不容易理解为什么必须进行检验。

教学过程:

在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“12.7节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望。

为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的理解,从而调动学生能积极主动地参与到教学活动中去。

一、新课引入:

1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?

2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

3、产生增根的原因是什么?.

二、新课讲解:

通过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同。

点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。

在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。

分式方程教学设计(4)

教学目标:

1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。

2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。

教学重点:去分母法解可化为一元一次方程或一元二次方程的分式方程。验根的方法。

教学难点:验根的方法。分式方程增根产生的原因。

教学准备:小黑板。

教学过程:

复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?

讲授新课:

1.由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。

2.讨论分式方程的解法:

(1)复习解方程时,怎样去分母?

(2)讲解例1:解方程(按课文讲解)

归纳:解分式方程的基本思想:

分式方程整式方程

(3)讲解例2:解方程(按课文讲解)

归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。

想一想:产生增根的原因是什么?

巩固练习:P1451t,2t。

课堂小结:什么叫做分式方程?

解分式方程时,为什么要检验?怎样检验?

布置作业:见作业本。

分式方程教学设计(5)

【教学目标】

一、知识目标

经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。

二、能力目标

知道分时方程的意义,会解可化为一元一次方程的分式方程。

三、情感目标

在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。

【教学重难点】

将实际问题中的等量关系用分式方程表示。找实际问题中的等量关系。

【教学过程】

一、课前预习与导学

1.什么叫做分式方程?解分式方程的步骤有哪几步?

2.判断下面解方程的过程是否正确,若不正确,请加以改正。

解方程:=3-

解:两边同乘以(x-1),得

2=3-x=1,①

x=3+1-2,②

所以x=2.③

(不正确。正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3)

3.解下列分式方程:(1)=(2)+=2

二、新课

(一)情境创设:

1.甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。怎样用方程来描述其中数量之间的相等关系?

设甲每天加工服装多少件,可得方程:

2.一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。怎样用方程来描述其中数量之间的相等关系?

设这个两位数的十位数字是x,可得方程:

3.某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽车的速度是自行车的速度的3倍。怎样用方程来描述其中数量之间的相等关系?

设自行车的速度为xkm/h,可得方程:

(二)探索活动:

1.上面所得到的方程有什么共同特点?

2.这些方程与整式方程有什么区别?

结论:分母中含有未知数的方程叫做分式方程。

3.如何解分式方程=?

解:这个分式方程的两边同乘各分式的最简公分母x(x+1),

可以得到一元一次方程:20(x+1)=24x

解这个方程,得

x=5

为了判断x=5是否是原方程的解,我们把x=5代入原方程:

左边==4,右边==4,左边=右边。

x=5是原方程的解。

说明:解分式方程的一般步骤是先去分母(在分式方程的两边同乘各分式的最简公分母),把不熟悉的分式方程转化为熟悉的一元一次方程来解决。

三、例题教学:

例1.解方程:-=0

板书出解分式方程的一般过程及完整的书写格式。

解:方程两边同乘x(x-2),得

3(x-2)-2x=0

解这个方程,得

x=6

把x=6代入原方程:左边=右边=0,左边=右边。

x=6是原方程的解。

四、课堂练习:

1.下列各式中,分式方程是()

A.B.C.D.

2.分式方程解的情况是()

A.有解,B.有解C.有解,D.无解

3.解下列方程:

4.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程?并求解。

分式方程教学设计(6)

教学目标

(一)教学知识点

1、用分式方程的数学模型反映现实情境中的实际问题。

2、用分式方程来解决现实情境中的问题。

(二)能力训练要求

1、经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力。

2、认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型。

(三)情感与价值观要求

1、经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣。

2、培养学生的创新精神,从中获得成功的体验。

教学重点

1、审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型。

2、根据实际意义检验解的合理性。

教学难点

寻求实际问题中的等量关系,寻求不同的解决问题的方法。

教具准备

实物投影仪

投影片三张

第一张:做一做,(记作3、4、3A)

第二张:例3,(记作3、4、3B)

第三张:随堂练习,(记作3、4、3C)

教学过程

Ⅰ、提出问题,引入新课

[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程。

接下来,我们就用分式方程解决生活中实际问题。

Ⅱ、讲授新课

出示投影片(3、4、3A)

做一做

某单位将沿街的一部分房屋出租。每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9。6万元,第二年为10。2万元。

(1)你能找出这一情境的等量关系吗?

(2)根据这一情境,你能提出哪些问题?

[师]现在我们一块来寻求这一情境中的等量关系。

分式方程教学设计(7)

《分式方程》的课程教学设计

教学目标

1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.

2.经历“实际问题-分式方程方程模型”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.

教学重点:

将实际问题中的等量 关系用分式方程表示

教学难点:

找实际问题中的等量关系

教学过程:

一、情境导入:

有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的`所有等量关系吗?(分组交流)

如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

根据题意,可得方程___________________

二、讲授新课

从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。

这 一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

根据题意,可得方程_ _____________________。

学生分组探讨、交流,列出方程.

三、做一做:

为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为 人,那么 满足怎样的方程?

四、议一议:

上面所得到的方程有什么共同特点?

分母中含有未知数的方程叫做分式方程。

分式方程与整式方程有什么区别?

五、 随堂练习

(1)据联合国《2003年全球投资 报告》指出,中国2002年吸收外国投资额 达530亿美元,比上一年增加了13%。设2001年我国吸收外国投资额为 亿美元,请你写出 满足的方程。你能写出几个方程?其中哪一个是分式方程?

(2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2. 5千米/小时,求轮船的静水速度

(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好

六、学 习小结

本节课你学到了哪些知识?有什么感想?

七、作业布置:

【微语】我生来就普通,没必要惊艳谁。

985大学 211大学 全国院校对比 专升本 美国留学 留求艺网

温馨提示:
本文【分式方程教学设计(通用7篇)】由作者教培参考提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号 美国留学 留求艺