培训啦 考试资料 > 知识点

数学主要知识点(精品17篇)

教培参考

教育培训行业知识型媒体

发布时间: 2024年12月24日 09:40

数学主要知识点(1)

时分秒

1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。

3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。

6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。

8、公式。(每两个相邻的时间单位之间的进率是60)

1时=60分1分=60秒

半时=30分60分=1时

60秒=1分30分=半时

万以内的加法和减法

1、认识整千数(记忆:10个一千是一万)

2、读数和写数(读数时写汉字写数时写阿拉伯数字)

①一个数的末尾不管有一个0或几个0,这个0都不读。

②一个数的中间有一个0或连续的两个0,都只读一个0。

3、数的大小比较:

①位数不同的数比较大小,位数多的数大。

②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。

4、求一个数的近似数:

记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。

5、被减数是三位数的连续退位减法的运算步骤:

①列竖式时相同数位一定要对齐;

②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

7、公式

和=加数+另一个加数

加数=和-另一个加数

减数=被减数-差

被减数=减数+差

差=被减数-减数

测量

1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

4、在计算长度时,只有相同的长度单位才能相加减。

小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )

①进率是10:

1米=10分米, 1分米=10厘米,

1厘米=10毫米, 10分米=1米,

10厘米=1分米, 10毫米=1厘米,

②进率是100:

1米=100厘米, 1分米=100毫米,

100厘米=1米, 100毫米=1分米

③进率是1000:

1千米=1000米, 1公里==1000米,

1000米=1千米, 1000米=1公里

6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

把千克换算成吨,是在数字的末尾去掉3个0。

7、相邻两个质量单位进率是1000。

1吨=1000千克1千克=1000克

1000千克= 1吨1000克=1千克

倍的'认识

1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

多位数乘一位数

1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)

2、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

3、因数末尾有几个0,就在积的末尾添上几个0。

4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

公式:速度×时间=路程

每节车厢的人数×车厢的数量=全车的人数

5、(关于“大约)应用题:

①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)

②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)

③条件和问题中都有“大约”,求近似数,用估算。→(≈)

四边形

1、有4条直的边和4个角封闭图形我们叫它四边形。

2、四边形的特点:有四条直的边,有四个角。

3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

4、正方形的特点:有4个直角,4条边相等。

5、长方形和正方形是特殊的平行四边形。

6、平行四边形的特点:

①对边相等、对角相等。

②平行四边形容易变形。(三角形不容易变形)

7、封闭图形一周的长度,就是它的周长。

8、公式。

正方形的周长=边长×4

正方形的边长=周长÷4,

长方形的周长=(长+宽)×2

长方形的长=周长÷2-宽,

长方形的宽=周长÷2-长

分数的初步认识

1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

3、①分子相同,分母小的分数反而大,分母大的分数反而小。

②分母相同,分子大的分数就大,分子小的分数就小。

4、①相同分母的分数相加、减:分母不变,只和分子相加、减。

② 1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数。

数学主要知识点(2)

一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

三、整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

数学主要知识点(3)

知识点:

灵活运用有余数除法及相关知识解决生活中的简单实际问题。

认识分米、毫米、千米

1、分米用字母dm表示,1分米写成1dm

2、毫米用字母mm表示,1毫米写成1mm

3、千米用字母km表示,1千米写成1km

米、分米、厘米、毫米、千米之间的换算

1、1厘米=10毫米或1cm=10mm

2、1分米=10厘米或1dm=10cm

3、1米=100厘米或1m=100cm

4、1米=10分米或1m=10dm

5、1千米=1000米或1km=1000m

感受1分米、1毫米、1千米间的实际长度

1、一张IC卡的厚度大约是1毫米

2、1扎的长度大约是1分米

3、公共汽车两站地间的距离大约是1千米

4、根据具体情境选择合适的长度单位

铅笔有多长(分米、毫米的认识)

知识点:

通过实际测量,了解米、分米、厘米、毫米之间的关系。

1分米=10厘米 或1dm=10cm;

1米=10分米 或 1m=10dm;

1厘米=10毫米 或1cm=10mm;

知道1分米或1毫米的实际长度。

能利用长度单位之间关系进行单位换算

数学主要知识点(4)

考点14:圆心角、弦、弦心距的概念

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.

考点15:圆心角、弧、弦、弦心距之间的关系

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.

考点16:垂径定理及其推论

垂径定理及其推论是圆这一板块中最重要的知识点之一.

考点17:直线与圆、圆与圆的位置关系及其相应的数量关系

直线与圆的位置关系可从 与 之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.

考点18:正多边形的有关概念和基本性质

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.

考点19:画正三、四、六边形.

考核要求:能用基本作图工具,正确作出正三、四、六边形.

数学主要知识点(5)

反比例函数

形如y=k/_(k为常数且k≠0)的函数,叫做反比例函数。

自变量_的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-_)=-f(_),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

对于双曲线y=k/_,若在分母上加减任意一个实数(即y=k/(_±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

数学主要知识点(6)

(1)直线的倾斜角

定义:_轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与_轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于_1,所以它的方程是_=_1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

⑤一般式:(A,B不全为0)

注意:○1各式的适用范围

○2特殊的方程如:平行于_轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(4)直线系方程:即具有某一共同性质的直线

数学主要知识点(7)

考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.

考点3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.

考点4:相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.

考点5:三角形的重心

考核要求:知道重心的定义并初步应用.

考点6:向量的有关概念

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

数学主要知识点(8)

考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.

考点3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.

考点4:相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.

考点5:三角形的重心

考核要求:知道重心的定义并初步应用.

考点6:向量的有关概念

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

数学主要知识点(9)

考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.

考点11:用待定系数法求二次函数的解析式

考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.

注意求函数解析式的步骤:一设、二代、三列、四还原.

考点12:画二次函数的图像

考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.

考点13:二次函数的图像及其基本性质

考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.

注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.

数学主要知识点(10)

考点14:圆心角、弦、弦心距的概念

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.

考点15:圆心角、弧、弦、弦心距之间的关系

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.

考点16:垂径定理及其推论

垂径定理及其推论是圆这一板块中最重要的知识点之一.

考点17:直线与圆、圆与圆的位置关系及其相应的数量关系

直线与圆的位置关系可从 与 之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.

考点18:正多边形的有关概念和基本性质

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.

考点19:画正三、四、六边形.

考核要求:能用基本作图工具,正确作出正三、四、六边形.

数学主要知识点(11)

考点20:确定事件和随机事件

考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件.

考点21:事件发生的可能性大小,事件的概率

考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率.注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确.

考点22:等可能试验中事件的概率问题及概率计算

本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题.

在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整.

考点23:数据整理与统计图表

本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息.

考点24:统计的含义

本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法.

考点25:平均数、加权平均数的概念和计算

本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式.注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率.

考点26:中位数、众数、方差、标准差的概念和计算

考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题.

注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序.

考点27:频数、频率的意义,画频数分布直方图和频率分布直方图

考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题.解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是

考点28:中位数、众数、方差、标准差、频数、频率的应用

本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决.

数学主要知识点(12)

考点一、映射的概念

了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多

映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素_,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。包括:一对一多对一

考点二、函数的概念

函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数_,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。记作y=f(_),其中_叫自变量,_的取值范围A叫函数的定义域;与_的值相对应的y的值函数值,函数值的集合叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。

函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的依据。

区间的概念:设a,bR,且a

①(a,b)={_a

⑤(a,+∞)={__>a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__

考点三、函数的表示方法

函数的三种表示方法列表法图象法解析法

分段函数:定义域的不同部分,有不同的对应法则的函数。注意两点:①分段函数是一个函数,不要误认为是几个函数。②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

考点四、求定义域的几种情况

①若f(_)是整式,则函数的定义域是实数集R;

②若f(_)是分式,则函数的定义域是使分母不等于0的实数集;

③若f(_)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;

④若f(_)是对数函数,真数应大于零。

⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。

⑥若f(_)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;

⑦若f(_)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题

数学主要知识点(13)

一、线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

二、垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

数学主要知识点(14)

定义:

形如y=x^a(a为常数)的函数,即以底数为自变量 幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下: 在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:

如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)显然幂函数无界。

数学主要知识点(15)

时分秒

1、认识钟面:

(1)钟面上最短最粗的针是时针,较短较粗的是分针,最细最长的是秒针。

(2)钟面上有12个大格,每个大格里有5个小格。钟面上共有60个小格。

(3)时针走1大格是1小时。时针走1大格分针走1圈,也就是60小格,1时=60分。

(4)分针走1小格是1分,走1大格是5分。

秒针走1小格是1秒,走1大格是5秒。

分针走1小格秒针走1圈,1分=60秒

2、认识整时方法:分针指着12,时针指着几就是几时。

时针、分针、秒针全部重合的时间是12时,

时针和分针成一条直线的时间是6时,

时针和分针成直角的时间是3时和9时。

3、认识几时几分方法:时针指在两个数之间,算小数,时针指在12和1之间,算12时,分针指着几,表示几个5分钟。

4、记录时间有两种方法:

(1)文字法:如:5时50分;

(2)用电子表法记录时刻时,几时就写几,再写“:”,后面写分时要占两位,分针不够整十的,十位要用0占位。如:8时零5分写作8:05

5、认识大约几时方法:时针接近几就是几时。此时,分针一般指在数字12左右。

6、计算两段时间之间的时间方法:用结束的时间减去开始的时间。整时减整时,分钟减分钟,分钟不够减向整时借1时在分钟上加60分钟再减。整时借出的1时要记得减去。

7、比较时间:单位不同时要化成相同的时间单位再进行比较。在进行比赛(或做事)时:同样的距离(或同样的事情)所用的时间越多说明速度越慢(或效率越低);所用的时间越少说明速度越快(或效率越高)。

数学主要知识点(16)

总结比较,理清思绪

(1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。

(2)题目的总结比较。同学们可以建立自己的题库。我就有两本题集。一本是错题,一本是精题。对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。我还把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想小学数学学习方法有哪些小学辅导。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。最终它们会成为你宝贵的财富,对你的数学学习有极大的帮助。

有选择地做课外练习

课余时间对我们中学生来说是十分珍贵的,所以在做课外练习时要少而精,只要每天做两三道题,天长日久,你的思路就会开阔许多。

正确的小学数学学习方法固然重要,但坚持不懈,精益求精的精神更为重要。只要你刻苦努力努力,就一定可以学好数学。相信自己,数学会使你智慧的光芒更加耀眼夺目!

数学主要知识点(17)

一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

三、整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

【微语】失望攒够了我却还没走,留在原地攒绝望。

985大学 211大学 全国院校对比 专升本 美国留学 留求艺网

温馨提示:
本文【数学主要知识点(精品17篇)】由作者教培参考提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号 美国留学 留求艺