教培参考
教育培训行业知识型媒体
发布时间: 2024年11月23日 03:09
教学目标:
1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。
2、通过操作使学生进一步学习用转化的思想方法解决新问题。
3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。
4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积的推导过程。
教法与学法:
教法:演示讲解、指导实践。
学法:小组合作、动手操作。
教学准备:
三角形卡片、多媒体课件
教学过程:
一、情境引入。
师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法。(板书课题)
通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。
二、探究新知。
1、复习平行四边形面积的求法。
师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?
师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。
抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。
2、第一次操作实践。
师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)
3、交流反馈。
师:同学们都拼好了,谁来说说你是怎样拼的?
生:我用两个直角三角形拼成了一个平行四边形。
师:我这也有两个直角三角形,可是拼不成,为什么?你有什么发现?
生:要用完全相同的三角形来拼。
师:你拼时怎么知道是两个完全相同的三角形呢?
生:把两个三角形重合就知道了。
师:对,要用两个完全相同的三角形来拼。
师:还有不同的拼法吗?
生:我用两个完全相同的锐角三角形拼成了一个平行四边形。
生:我用两个完全相同的钝角三角形也拼成了一个平行四边形。
(学生汇报并且交流拼法,明确用两个完全一样的三角形能拼成一个平行四边形。)
师:看看这几种拼法它们有什么共同点呢?认真观察,同桌互相说说。
4、第二次操作实践。
师:说的真好,刚才同学们把两个形状完全一样的三角形通过拼组,转化成了平行四边形,也就把三角形面积的计算和我们刚学过的平行四过形面积计算联系起来了,下面我们再次合作,根据你们转化的图形,找到它们之间的联系,推导出三角形面积的计算公式。(生讨论交流)
放手让学生自己通过前面的拼摆操作,探索三角形与拼成的长方形,平行四边形或正方形之间的内在联系,能够使学生更好地理解三角形面积公式的推导过程。
师:谁来说说你是怎样推导的?
生汇报
师板书:三角形的面积=底×高÷2
师:你们的发现太棒了!下面请同学再仔细观察所拼成的'平行四边形的底与三角形的底,所拼成的平行四边形的高与三角形的高看看有什么发现?
师:我们把这种相等的关系叫等底等高。
师:那么三角形的底乘以三角形的高求出的是什么?
生:与三角形等底等高的平行四边形的面积。
师:为什么除以2呢?
生:因为三角形的面积是与它等底等高的平行四边形面积的一半,所以要除以2。
师:大家同意吗?无论什么样的三角形,它的面积都可以转化成平行四边形的面积来计算,所以我们得到三角形的面积公式=底×高÷2
师:谁能用字母表示三角形的面积公式
师板书s=ah÷2(生齐读)
三、运用公式,解决问题。
(1)师:利用三角形面积公式,我们可以方便地解决一些实际问题了!老师这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?(100厘米)
师:(出示课件)它的高是33厘米,你能计算出它的面积吗?
在练习本上算一算。
〔设计意图〕在解决实际问题中巩固新知,培养学生学数学、用数学的思想,感受数学的价值。
(2)我们经常见到类似的标志的标志牌(课件出示),你知道这个标志牌的面积吗?谁口算一下。
3×4÷2=6(平方分米)
2.5×4.8÷2=6(平方分米)
师:都是这样做的吗?为什么不用2.5分米?
如果这条底边是4.8分米(课件出示)还可以怎样列式。(2.5×4.8÷2)
师:通过这道题的解答,你明白了什么?
〔设计意图〕通过解决实际生活,提升学生思考能力,培养学生认真观察的能力。
(3)你认识下面的这些道路交通警示标志吗?
向右急转弯 注意危险 减速慢行 注意行人
师:我们学校的上下两个路口在放学时经常交通混乱,为了改变这种状况,交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?(课件)
学生试算
〔设计意图〕这道练习的设计,既巩固了数学知识又自然地渗透了安全教育。
(4)小精灵也给大家带来了问题,请大家看屏幕
师:下图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?
学生打开书87页,在书中画一画
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?
生:无数个
师:通过画这样的三角形,你发现了什么?
生:三角形的面积与底和高有关,与形状无关。
让学生通过思考、讨论、揭示“等底等高的三角形,它们的面积相等”这一规律。
四、总结收获
这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式(课件演示)课下同学们可以动手试一试。
师:同学们,这节课你最大的收获是什么?
生:我学会了三角形的面积怎样计算。
生:我学会了用转化的方法推导三角形的面积计算公式。
师:下节课我们继续运用转化的思想探究梯形面积的计算方法。
通过反思和总结,能使学生建构的知识框架更加清晰、明了,使学生不仅掌握了知识,而且也掌握了学习方法。
教学内容:
三角形的面积第84—85页
教学目标:
1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。
2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3、培养学生的创新意识和合作精神。
教学重点:
理解三角形面积计算公式,正确计算三角形的面积。
教学难点:
在转化中发现内在联系及推导说理。
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。红领巾等。
教学过程
一、复习导入:
1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?
指名说一说,师可再现推导过程。
2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。
二、探究三角形的面积公式。
1、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
2、用两个完全一样的直角三角形拼。
(1)教师参与学生拼摆,个别加以指导。
(2)演示课件:拼摆图形。
(3)讨论。
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?
3、用两个完全一样的锐角三角形拼。
(1)组织学生利用手里的学具试拼。(指名演示)
(2)演示课件:拼摆图形。(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
4、用两个完全一样的钝角三角形来拼。
(1)由学生独立完成。
(2)演示课件:拼摆图形。
5、讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
6、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
7、教学例1
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1、由学生独立解答。
2、订正答案。(教师板书)
三、总结:
(一)总结这一节课的收获,并提出自己的问题。
(二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?
四、反馈练习。
计算下面每个三角形的面积。
1、底是4.2米,高是2米;
2、底是3分米,高是1.3分米;
(三) 判断
1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
2、等底等高的两个三角形,面积一定相等。( )
3、两个三角形一定可以拼成一个平行四边形。( )
4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )
板书设计
三角形的面积
平行四边形的面积=底×高,
三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)
三角形面积=底×高÷2
S=ah÷2
教学内容:三角形的面积第84—85页
教学目标:
1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。
2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3、培养学生的创新意识和合作精神。
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
在转化中发现内在联系及推导说理。
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。红领巾等。
教学过程
复习导入:
1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?
指名说一说,师可再现推导过程。
2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。
二、探究三角形的面积公式.
1.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
2.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?
3.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
4.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:拼摆图形
5.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
6、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
7.教学例1
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1.由学生独立解答.
2.订正答案(教师板书)
三、总结:
(一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?
四、反馈练习
计算下面每个三角形的面积.
1.底是4。2米,高是2米;
2.底是3分米,高是1。3分米;
(三) 判断
一个三角形的底和高是4厘米,它的面积就是16平方厘米。( ) 2、等底等高的两个三角形,面积一定相等。( )
3、两个三角形一定可以拼成一个平行四边形。( )
4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )
板书设计
三角形的面积
平行四边形的面积=底×高,
三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)
三角形面积=底×高÷2
S=ah÷2
教材分析
本节内容是在学生充分认识了三角形的特征以及掌握了长方形、平行四边形面积计算的基础上安排的。其推导方法与平行四边形面积公式的推导方法有相通之处。同时本课也是学习梯形、组合图形面积的基础,在实际生活中这部分的应用也非常广泛,所以本课内容的学习是很重要的。
学情分析
学生在掌握了正方形和长方形面积的基础之上才能学好本课,让学生动手操作去探索数学的奥秘。
教学目标
知识与技能目标:使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。
过程与方法目标:使学生通过操作和对图形的观察、比较、发展空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
情感态度与价值观:在探索学习过程中,培养学生的实践能力、探索意识、合作精神与创新精神;同时使他们获得积极、成功的情感体验。
教学重点和难点
1、掌握三角形面积的计算公式,会运用公式计算三角形的面积。
2、理解三角形面积计算公式的推导方法。
教学过程
一、 创设情境,导入新课
1、 同学们,上一节课我们学习了平行四边形面积的计算你还能记住求平行四边形面积的公式吗?(S=a×b)那么,这个公式是怎样推导出来的呢?
2、同学们,请大家自己看看胸前的红领巾,知道红领巾是什么形状的吗?(三角形)如果叫你们裁一条红领巾,你知道要用多大的布吗?(求三角形面积)。要想知道这条红领巾的面积时多少,就要用到三角形的面积公式,今天这节课我们就来研究三角形面积的计算方法。
板书:三角形的面积
二、 讲授新课
1、上节课,我们在研究平行四边形的面积公式时,是把平行四边形转化成我们学过的方法形或正方形来研究的。今天,我们能不能将三角形也转化成我们已经学过的图形,从而推导出三角形的面积公式呢?
2、提问:请同学们回想一下,三角形按角分类可以分为几类?分别是?
(锐角三角形、直角三角形、钝角三角形)
3、我为大家准备了这些三角形,请你们自己试图去拼一拼,看你能发现什么?
4、拼图推导公式,按三角形类别的不同,可以有以下几种方法
⑴、两个完全一样的锐角三角形
提问:两个完全一样的锐角三角形能拼成了什么图形?你发现了什么?
两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的面积相当于三角形面积的2倍,因为平行四边形的面积等于底乘以高,所以三角形的面积等于底乘以高除以2。
老师把图形贴在黑板上,再请说推导过程,并板书:
平行四边形的面积= 底 × 高
三角形的面积= 底 × 高÷2
⑵、两个完全一样的钝角三角形
两个完全一样的钝角三角形拼成一个平行四边形
⑶、两个完全一样的直角三角形
两个完全一样的直角三角形拼成一个长方形。
5、小结:我们用两个完全一样的三角形,拼成了平行四边形或长方形,利用平行四边形或长方形的面积公式,推导出了三角形的面积公式。如果用字母a表示三角形的底,h表示三角形的高,s表示三角形的面积,你能用字母表示出三角形的面积公式吗?
板书:s=ah÷2
三、巩固练习
5、练习:出示教材第85页的例2,请学生独立完成,指明板演。
6、学生独立完成教材第85页的“做一做”及第86页的练习十六的第1、2题。
四、课堂小结
提问:这节课我们探索了那些知识?学到了些什么?
这节课我们主要通过用两个完全一样的三角形,拼成了平行四边形或长方形,利用平行四边形或长方形的面积公式,推导出了三角形的面积公式。从而得到三角形的面积等于底乘以高除以2。这种“转化”的数学方法是数学研究的重要手段,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。
五、思维拓展
教材第87页第6题。
六、布置作业
教材第87页第3题。
教材简析:
“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。
教学内容:
苏教版标准实验教科书《数学》五年级上册P15~P16的内容,三角形的面积。
教学目标:
1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重、难点:
重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。
教、学具准备:
课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
教学过程:
一、创设情境、导入新课
1、提出问题。
师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?
2、揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)
二、操作“转化”,推导公式
1、寻找思路。
师:是的,我们还不会计算三角形的面积。那同学们想一想,开始我们同样不会计算平行四边形的面积,后来我们通过什么方法推导出了平行四边形的面积计算公式的呢?
师:对,我们用“割补”的方法把平行四边形“转化”(板书:转化)成了一个长方形,这样推导出了平行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?
师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?
[应变预设:同学们根据已有的经验,一般会认为可以用这种方法,教师可以选择一种方法实际“割补”,让学生明白这种方法不好,需要寻找更好的方法。]
2、动手“转化”。
师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。
小组合作拼组图形,教师巡视指导。
[应变预设:可能有些同学不会拼组,教师可指导他们用旋转、平移等方法,把两个完全一样的三角形拼成一个平行四边形或一个长方形。]
师:拼好了吗?用这种拼一拼的方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?
[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]
师:同学们,为什么有些小组拼成了一个平行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?
[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]
3、尝试计算。
师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。
师:这个平行四边形就是由两个完全相同的三角形拼成的,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?
[评析:引导学生说出拼成的平行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]
师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。
师:算完了吗?它的面积是多大?
师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。
[应变预设:在设法求三角形的面积时,可能有部分同学不明白三角形的面积和平行四边形面积之间的关系,不会计算。这时教师应引导学生明确每个三角形的面积是拼成的平行四边形面积的一半,计算三角形的面积可用平行四边形的面积除以2得出。]
一、教学目标
(一)知识与技能
让学生经历探索三角形面积计算公式的过程,掌握三角形的面积计算方法,能解决相应的实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观
让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
二、教学重难点
教学重点:探索并掌握三角形面积计算公式。
教学难点:理解三角形面积计算公式的推导过程,体会转化的思想。
三、教学准备
多媒体课件,学具袋(每小组各有两个完全一样的直角三角形、锐角三角形、钝角三角形),一条红领巾。
四、教学过程
(一)复习铺垫,激趣引新
1、复习旧知。
(1)计算下面各图形的面积。(PPT课件演示)
(2)创设情境。(PPT课件演示)
同学们,请大家看看自己胸前的红领巾,它是什么形状?如果要裁剪一条红领巾,你知道要用多大的红布吗?求所需红布的大小就是求这个三角形的什么?
2、回顾引新。
(1)回顾:还记得平行四边形的面积计算公式吗?它是怎样推导出来的?
(2)引新:如果知道了三角形的面积计算公式,就能直接求出裁剪红领巾所需红布的大小了。今天这节课,我们就来研究三角形的面积。(板书课题:三角形的面积)
【设计意图】首先复习旧知,体会用公式计算图形面积的便捷性,回顾平行四边形面积计算公式的推导过程,唤醒学生相关的活动经验,为后面推导三角形面积计算公式的教学做好准备。同时,用学生熟悉的红领巾引入新课,体会数学问题来源于生活,激发了他们的学习兴趣。
(二)主动探索,推导公式
1、操作转化。
(1)提出问题:既然平行四边形能转化成长方形推导出面积计算公式,那三角形能不能也像这样,通过转化推导出计算面积的公式呢?
(2)学生分组操作,教师巡视指导。
学生操作预设:如果学生只用一个三角形时无法利用割补法将三角形转化成已学过的图形,教师可适时引导换一种思考方式,用两个相同的三角形试试。
(3)学生展示汇报。
预设拼法一:用两个完全一样的锐角三角形拼成一个平行四边形。
预设拼法二:用两个完全一样的直角三角形拼成一个长方形或平行四边形(以长方形为例)。
预设拼法三:用两个完全一样的钝角三角形拼成一个平行四边形(以其中一种情况为例)。
(4)想一想:你们拼的都不一样,但是,我们可以发现,只要是两个完全一样的三角形,一定能拼成什么图形?
学生观察,发现:有的用两个完全一样的锐角三角形拼成了一个平行四边形,有的用两个完全一样的直角三角形拼成了一个长方形或平行四边形,还有的用两个完全一样的钝角三角形也拼成了一个平行四边形。虽然选取的三角形不一样,拼出的结果也不一样,但是,只要用两个完全一样的三角形就能拼成一个平行四边形。
2、观察思考。
(1)观察拼成的平行四边形和原来的三角形,你发现了什么?(PPT课件演示)
(2)学生独立思考后汇报:三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,三角形的面积是平行四边形面积的一半。
3、概括公式。
(1)你能自己写出三角形的面积计算公式吗?(PPT课件演示)
(2)总结公式。
①板书公式:三角形的面积=底×高÷2。
②用字母表示三角形面积计算公式。(PPT课件演示)
(3)回顾与小结。
①我们已经知道三角形的面积等于底乘高除以2,回顾一下,它是怎样推导出来的?
②教师小结:当我们利用一个三角形无法将它转化成已学过图形的时候,我们选取了两个完全一样的三角形进行拼摆。不论是两个完全一样的锐角三角形、直角三角形还是钝角三角形,最后都能拼成一个平行四边形。通过观察思考发现,原三角形的底与拼成的平行四边形的底相等,原三角形的高与拼成的平行四边形的`高相等,原三角形的面积是拼成的平行四边形的面积的一半。今天的学习过程中,同学们依然采取把未知的三角形的面积转化成已知的平行四边形的面积来研究的方法,非常好!在今后的学习中,如果再碰到类似问题,希望能继续用这种方法使问题迎刃而解。
【设计意图】本环节设计了操作转化、观察思考和概括公式三个层次的教学,先提出问题,让学生利用转化的思想,带着问题进行操作;再从自己的展示和思考中发现用两个完全一样的三角形能拼成一个平行四边形,从而发现两者之间的等量关系;最后的小结环节,让学生回顾推导公式的过程,既培养他们回顾反思的能力,同时又进一步渗透转化思想。
(三)巩固运用,解决问题
1、教学教材第92页例2。
(1)出示例题,呈现问题情境。(PPT课件演示)
(2)理解题意,叙述题目内容。
①用自己的话说一说题目的意思是什么?
②学生根据图文叙述:知道红领巾的底是100cm,高是33cm,求它的面积是多少。
(3)收集信息,明确问题。
①提问:从题目中你获得了哪些数学信息?要求什么?
②思考:要求红领巾的面积,其实就是求什么?
③归纳:要求红领巾的面积,其实就是求底是100cm、高是33cm的三角形的面积。
(4)学生独立解答。
(5)学生汇报,教师板书,规范书写。
(6)对照实物与计算结果,帮助学生建立一定的空间观念。
2、完成“做一做”练习。
(1)完成教材第92页“做一做”第1题。(PPT课件演示)
①学生独立完成。
②同桌互相说说自己是怎样做的。
(2)完成教材第92页“做一做”第2题。(PPT课件演示)
①学生独立完成。
②全班集体交流:这个三角形的底和高分别是多少?怎样计算它的面积?
(3)完成教材第92页“做一做”第3题。(PPT课件演示)
①学生独立完成。
②同桌互相说说自己是怎样做的。
③全班集体交流:这个问题你是怎样算的?
【设计意图】例2呼应了开课时提出的研究问题,既巩固三角形面积计算公式的应用,又培养了学生解决实际问题的能力;紧接着,完成课后的“做一做”练习,可以帮助学生进一步深化理解面积公式。
(四)变式练习,内化提高
1、基本练习。
完成教材第93页练习二十第1题。(PPT课件演示)
(1)学生独立完成。
(2)同桌互相说一说自己是怎样算的。
(3)全班集体交流:你能说说这每个交通警示标识牌所表示的含义吗?怎样计算它的面积?用手势比划一下一个交通警示标识牌的大小。(同时进行安全教育,同时帮助学生建立空间观念。)
2、提高练习。
完成教材第93页练习二十第3题。(PPT课件演示)
(1)理解题意:怎样计算出这三个三角形的面积?需要知道什么?(先测量出每个三角形的底和高,再利用公式计算。)
(2)学生独立完成。
(3)全班集体交流:每个三角形的底和高分别是多少?怎样计算三角形的面积?
【设计意图】通过分层练习,巩固了学生对三角形面积计算公式的理解和应用,同时对学生进行交通安全教育。
(五)全课总结,畅谈收获
1、今天这节课学习了什么?怎样学的?
2、今天我们推导出了三角形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导计算公式时,我们选择将两个完全一样的锐角三角形、直角三角形或钝角三角形拼摆在一起,转化成已知的平行四边形面积来研究,再通过观察对比发现转化前后三角形与平行四边形之间的等量关系,从而推导出三角形的面积计算公式等于底乘高除以2。同学们今天依然是利用转化的思想解决了遇到的问题,最后还利用公式顺利解决了生活中的实际问题。
3、介绍数学小知识。
(1)同学们,你们知道吗?今天我们一起动手推导出来的三角形的面积计算公式,很早以前,我们的祖先就已经发现了。(PPT课件演示)
(2)同学们,我国古代数学家固然伟大,但是,老师觉得你们也很了不起!咱们不也找到三角形面积的计算方法了吗?其实,只用一个三角形也能转化成平行四边形,推导出三角形面积的计算公式,有兴趣的同学课下可以试一试!
(六)作业练习
1、课堂作业:练习二十第2题。
2、课外作业:练习二十第4题。
教学内容:
三角形面积公式的推导和面积的计算。课本P47--P49。练习十1-3题。
教学目标:
1、使学生理解三角形的面积正好是它等底等高的平行四边形面积的一半,引导学生推导出三角形面积计算公式。
2、使学生掌握三角形面积的计算公式,并能结合实际正确选择条件,应用公式计算三角形面积。
3、通过图形的割补、剪拼,渗透图形变化的数学思考方法,并培养学生的动手操作能力。
教学准备:
多媒体课件。学生准备剪拼的还有平行四边形、长方形等三个图形与三对三角形、剪刀等。
教学过程:
一、复习旧知,建立基础。
昨天我们学习了平行四边形的面积计算,请同学们回忆一下平行四边形的面积公式我们是怎样推导出来的?
学生回答,教师小结。平行四边形的面积公式我们是通过沿高剪割、平移的方法把平行四边形转化成了长方形后推导出来的。(演示推导过程)这样我们就把要学习的新知识转化成了已会的旧知识。(板书:转化)
我们今天也要应用这个思想来学习新知识。
二、导入新课,揭示课题
师:,这堂课我们学习"三角形面积的计算"(板书)。
三、三角形面积公式的推导
1、用数方格的方法求三角形的面积
多媒体屏幕出示3个三角形。放在边长为1厘米的正方形方格图中。每个小方格就是多少面积?
(1)、分别说说这三个三角形是什么三角形?
(2)、请你用数方格的方法求出这3个三角形的面积各是多少平方厘米(不满一个的,都按半格计算,小组里分一下工,每人数一种。看哪个小组数的最快)
边数边思考:
(1)。如果以水平方向的边为它的底,那么高在哪里?底和高分别是多少?
(2)。并且请你根据所得的结果猜一猜三角形的面积可能与什么有关?有怎样的关系呢?
思考题交流。
师:那么三角形能不能转化成我们学过的图形来推导出它的面积计算公式呢?你想转化成怎样的图形?
1、尝试操作
每个学生放有九个图形,其中六个三角形。请你剪一剪,或者拼一拼。看看三角形与我们以前学过的图形有没有关系?有怎样的关系?
要求:每个人做一次剪的实验、做一次拼的实验,小组长进行一下分工。
交流:通过剪一剪,或者拼一拼,你发现了什么?汇报剪的情况。
(1) 请学生把自己剪的图展示在投影仪上。说说你是怎样剪的?发现了什么?
根据剪的情况,谁能用一句话来概括一下?
(2)交流拼的情况,说说你是怎样拼的?通过拼一拼,你又发现了什么?
展示在投影仪上。根据拼的情况,谁能用一句话来概括一下?
教材简析:
“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。
教学内容:
苏教版标准实验教科书《数学》五年级上册P15~P16的内容,三角形的面积。
教学目标:
1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重、难点:
重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。
教、学具准备:
CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
教学过程:
一、创设情境、导入新课
1、提出问题。
师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?
2、揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)
二、操作“转化”,推导公式
1、寻找思路。
师:是的,我们还不会计算三角形的面积。那同学们想一想,开始我们同样不会计算平行四边形的面积,后来我们通过什么方法推导出了平行四边形的面积计算公式的呢?
师:对,我们用“割补”的方法把平行四边形“转化”(板书:转化)成了一个长方形,这样推导出了平行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?
师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?
[应变预设:同学们根据已有的经验,一般会认为可以用这种方法,教师可以选择一种方法实际“割补”,让学生明白这种方法不好,需要寻找更好的方法。]
2、动手“转化”。
师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。
小组合作拼组图形,教师巡视指导。
[应变预设:可能有些同学不会拼组,教师可指导他们用旋转、平移等方法,把两个完全一样的三角形拼成一个平行四边形或一个长方形。]
师:拼好了吗?用这种拼一拼的方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?
[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]
师:同学们,为什么有些小组拼成了一个平行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?
[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]
3、尝试计算。
师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。
师:这个平行四边形就是由两个完全相同的三角形拼成的,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?
[评析:引导学生说出拼成的平行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]
师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。
师:算完了吗?它的面积是多大?
师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。
[应变预设:在设法求三角形的面积时,可能有部分同学不明白三角形的面积和平行四边形面积之间的关系,不会计算。这时教师应引导学生明确每个三角形的面积是拼成的平行四边形面积的一半,计算三角形的面积可用平行四边形的面积除以2得出。]
师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。
师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形(底3cm,高2cm)的面积吗?算一算。
[应变预设:学生可能不会计算,教师可以引导学生观察,图中的虚线三角形,和蓝色三角形是完全一样的,它们也拼成了一个平行四边形。使学生明确3×2是这个平行四边形的面积,求这个三角形的面积还得除以2。]
师:同学们,你们太棒了!又计算出了一个三角形的面积。再看屏幕,(课件出示,如下图)你们还能计算这个三角形(底6cm,高4cm)的面积吗?
[评析:由清晰的由两个完全相同的三角形拼成的平行四边形,到由一实一虚的两个完全相同的三角形拼成的平行四边形,再到一个独立的三角形,面积计算逐步深入,层层推进,引导学生经历了由具象到抽象的过程,思维含量非常丰富。]
4、推导公式。
师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。
[应变预设:大多数的学生可能会说出“三角形的面积=底×高÷2”。教师应给以充分的肯定:你们推导出了三角形面积的计算公式!再引导学生说出推导的过程。]
5、理解公式。
师:同学们,老师有点不明白,为什么你们写这个公式时用三角形的底乘高呢?“底×高”表示什么意思呢?为什么还要“÷2”呢?
[评析:通过请学生帮助老师解困惑,加深学生对三角形面积计算公式含义的理解:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为三角形的面积是拼成平行四边形面积的一半,所以要“÷2”。这样既突破了教学难点,更加深了
学生对三角形面积计算公式的理解。]
6、用字母表示三角形的面积公式。
师:同学们,如果用a表示三角形的底,h表示三角形的高,S表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。
[评析:拼一拼、算一算、说一说、写一写……不知不觉中,同学们自己推导出了三角形的面积计算公式。学生自然地成为了学习的主人。]
师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本P85页的数学常识。)
[评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]
三、应用公式,解决问题
师:同学们,我们已经推导出了三角形的面积计算公式,现在我们就用三角形的面积计算公式解决一些实际的问题。这是刚才看到的那条红领巾,同学们,你们知道怎样才能求出做一条这样的红领巾要用多少红布吗?
师:对,要求做一条红领巾要用多少红布,实际是求这条红领巾的面积是多少?而要求这条红领巾的面积是多少?必须了解哪些数据呢?
师:那就请大家动手量一量它的底和高吧。
[评析:这里并没有直接给出红领巾的底和高,需要学生共同合作实际测量,培养了学生解决实际问题的能力。]
师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?
[应变预设:指导学生运用公式进行正确的计算,展示学生的算式,集体订正。]
四、联系生活,适当拓展
师:同学们,你们认识这些道路交通警示标志吗?(课件出示下面这些道路交通警示标志。)知道它们的具体含义吗?
师:交通标志对于维护交通安全有着重要的意义和作用。同学们,这些交通标志是什么形状的?
师:对,它们都是三角形的。(课件出示其中一个三角形标志的底和高,如下图)请大家算一算,这个标志牌(底9dm,高7dm)的面积大约是多少?
[应变预设:指导运用公式进行正确的计算,然后集体订正。]
师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图1:底3厘米,高4厘米;图2:底4厘米,高.5厘米;图3:底2.5厘米,高2.8厘米)看谁算得又对又快!
四、全课总结,反思体验
教师:这节课你们学习了什么?有哪些收获?
[总评:这节课教师注重从学生已有的知识经验出发,并引导学生将“转化”的思想迁移到新知识的学习中,动手操作推导出三角形的面积公式,亲身经历了数学知识的形成过程,增强了学生学习数学的兴趣。整一节课,教师尽量把时间和空间让给学生,组织他们动手实践,引导他们自主探索,参与他们的合作交流,使学生真正成为了学习的主人。]
教学内容:
《探索活动(二)三角形面积》
教学目标:
在实际问题情境中认识三角形面积必要性,在自主探究中体会有计划、有目的的选择适当的探究方法,锻炼学生动手操作的能力,进一步感知转化的数学思想和方法,学会用数学语言与他人交流,体验数学公式建立的过程,发展观察对比的能力、归纳概括能力及空间想象力。能正确地利用三角形面积公式计算,解决实际问题。
教学重点:
三角形面积公式的建立;利用分割与旋转进行图形转化
教学难点:
三家形面积公式的概括;利用分割与旋转进行图形转化
教学媒体的准备:
学具类:三个三角形(两个完全相同,一个不同)一个平行四边形;剪刀。
教具类:课件,与学具相应的教具。媒体:笔记本电脑、实物投影仪。
教学过程设计:
一、温故孕新,提出问题
⒈教师谈话:同学们,到现在我们已经学过哪些图形面积的计算了?你能说一说它们的面积计算公式吗?
学生口述,教师利用课件出示长方形、正方形、平行四边形图形及公式
教师提问:谁能说一说平行四边形面积计算公式的推导过程?
学生口述,教师利用课件再现平行四边形面积计算公式的推导过程。
(设计意图:通过再现平行四边形面积公式推导过程,重温将“未知”转化为“已知”的过程,为进一步探究三角形面积计算公式做好思维上的准备)
⒉教师利用课件出示教材p25主题图
教师引导审题:什么形状,给了什么条件,要求什么问题。学生观察后口述。
(设计意图:在实际问题中使学生认识三角形面积计算的必要性,激发学生学习的内驱力,为学生下面积极参与到探究过程中来做好心理上的准备)
⒊教师提问:你认为今天我们应该重点研究是什么?学生口述,教师板书:
三角形面积
教师谈话:今天这节课我们将通过“动手操作、观察对比”推导出三角形面积的计算公式。
(设计意图:学生在教师的指导下自我提出学习的`内容,教师明确的只出击将采用的方法和学习的目标,使学生做到思维定向。)
二、观察对比,设想转化
⒈教师提问:你能用什么办法得到三角形面积呢?学生思考口述,
预计学生可能提出以下两种方案
⑴数方格的办法,(打开教材p25,数出三角形的面积) ⑵将三角形转化为已经学过的图形(平行四边形)
⒉教师利用电脑课件再出示一个平行四边形(如右图),
引导学生与三角形进行观察对比,
思考:“怎样将三角形转化为平行四边形”,学生独立思考,分组交流,口述自己的或小组的意见。
(设计意图:将三角形与平行四边形进行对比,思考、交流转化的预想其目的都是培养学生有目的、有计划的进行探究活动,减少探究活动的盲目性和随意性,养成良好的思维习惯,发展学生空间想象的能力。)
三、动手操作,体验转化
⒈教师谈话:下面同学们可以按照自己的想法利用自己手中的学具进行转化,并思考一下的问题:(教师利用课件出示思考题)
在转化过程中的三角形和平行四边形有什么关系?
教师引导学生分析思考的含义
⒉学生按照自己的想法动手实践,根据思考题思考,在小组内交流,教师巡视,并作适当点拨。
⒊学生汇报探究的成果
预计有以下几种情况:
⑴拼:
①用两个完全相同的三角形拼成一个平行四边形
教师提问:这两个三角形有什么关系?完全相同是什么意思?如果不完全相同的两个三角形呢?
完全相同——形状,面积都相等(板书)
总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)
②通过割补把一个三角形拼成平行四边形
教师提问:为什么选择两条边的中点连线进行分割?
(原因:平行四边形的对边相等)
总结:当三角形和平行四边形等底等积时,三角形的高是平行四边形高的2倍。
教师利用电脑演示揭示实质:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)
⑵剪:将一个平行四边形剪成两个三角形
总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)
⒋教师提问:通过刚才一系列的活动,我们得到了一个怎样的结论?
学生思考,口述,
总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(或:三角形面积是与它等底等高的平行四边形面积的一半。)
(设计意图:通过动手、交流、汇报、归纳等教学活动,使学生在活动中“做”数学,体验知识形成的过程和自主获取新知的过程,积累数学实验的经验,发展分析、归纳等思维能力、空间想象能力、以及利用数学语言与他人交流的能力。)
四、建立公式,实践应用
⒈归纳公式
教师谈话:请同学们打开教材p25,学生阅读教材。
教师谈话:根据刚才得出的结论,请大家思考三角形面积应该怎样计算呢?在小组里说一说你的想法,然后把结论填在教材上
三角形面积=___________________________
如果用s表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积公式可以写成:
s=_______________
学生思考,交流,填写,口述,教师板书
三角形面积=底×高÷2;s=ah÷2
⒉剖析公式:教师提问:①计算三角形面积必须知道什么条件?②底乘以高等到的是什么?③为什么除以2?
⒊回归问题:
教师谈话:现在我们能求这个三角形的面积了吗?
学生重新审题,独立完成,口述,教师板书
4×3÷2=6(cm2);答:它的面积6cm2。
⒋巩固练习:完成教材p26试一试。
学生独立完成,板演,教师订正
(设计意图:以教材为引领,完成自主探究的学习过程,经历数学建模。)
作业设计:
⒈利用学具摆一摆、说一说三角形面积推倒的过程,复述重要的结论。
⒉完成教材p26练一练第1题。
板书设计:(略)
教学目标:
1、知识与技能:
(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2、过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:
探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:
三角形面积公式的推导过程。
教学关键:
让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。
教具准备:
红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:
每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。
教学过程:
一、创设情境,揭示课题
师:今天老师有什么不同?老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗? (把红领巾展开贴在黑板上)
教师提出问题:
⑴红领巾是什么形状的?(三角形)。
⑵你会算三角形的面积吗?
师:这节课我们一起来学习探索三角形面积的计算方法。
板书:三角形的面积
[设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“教学活动”转化为“学习活动”。]
二、探索新知
1、寻找思路:(出示一个长方形)
师:(1)长方形面积怎样计算?
(2)怎样可以把这个长方形平均分成两份?
有三种方法:
方法一:方法二: 方法三:
师:方法三中把长方形平均分成两个三角形,大小有什么关系?(完全一样)
每个三角形面积与原长方形的面积有什么关系?
[设计意图:通过把长方形平均分成两个三角形,学生在直观观察的基础上通过建立与长方形及面积的比较,直接感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]
生:长方形的面积=长×宽
生:哪么,剪成的每个直角三角形的面积等于原长方形的面积的一半,三角形的底等于原长方形的长,三角形的高是原长方形的宽,也就是直角三角形的面积等于底乘高除以二。
板书:三角形的面积=底×高÷2(直角三角形)
师:你想,直角三角形的面积可以这样计算,是不是所有的三角形的面积都可以用这种方法去计算呢?今天我们一齐来探讨。上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?(挂出课本84页主题图让学生观察、引发思考)
接着出示思考题:
(1)将三角形转化成学过的什么图形?
(2)每个三角形与转化后的图形有什么关系?
[设计意图:学生已经学习了平行四边形面积公式的推导过程,启发学生:能不能把三角形也转化成已学过的图形来求它的面积呢?在讲授公式来由之前,以动手把长方形平分成两份的实验,直接引出直角三角形的面积计算方法,做到先入为主的作用,引导学生去猜想。再让学生自己找到新旧知识间的联系,使旧知识为新知识的铺垫。]
2、分组操作、讨论,合作学习。
(1)提出操作和思考要求。
学生用课前准备的三种类型三角形(完全一样的各两个),四人为一小组合作动手拼一拼、摆一摆。
小黑板出示讨论问题:
①用两个完全一样的三角形拼一拼,能拼出什么图形?
②拼出的图形的面积你会计算吗?
③拼出的图形与原来三角形有什么联系?
(2)学生以“四人小组”为单位进行操作和讨论。
[设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形的面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又中从找到对应关系,渗透了对应关系的教学。]
平移
旋转180°
合拼
教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学生:你是怎样拼的'?能说一说你的拼法吗?(如果学生操作有困难,教师可以适当引导学生操作:摆出两个完全一样的三角形,把其一个三角形旋转、移动,和另一个三角形拼成一个平行四边形。如图,让学生模仿练习)
[设计意图:让学生找到了新旧知识的连接点与转化方式,使学生正确掌握操作方法,要求学生表述操作过程,规范学生的数学语言,培养学生的口述能力,提高学生的操作技能。]
(3)学生上讲台板演。
①小组汇报实验情况。(让学生将转化后的图形贴在黑板上,然后口述操作过程。)
可能出现以下情况:(用两个完全一样的三角形摆拼)
(两锐角三角形) (两钝角三角形) (两直角三角形)
平行四边形平行四边形长方形
②学生演示:用旋转平移的方法将三角形转化成各种已学过的图形。
师:通过动手操作,你们发现了什么?
引导学生得出:只要是两个完全一样的三角形都可以拼成一个平行四边形。(或长方形)
师:每个三角形的面积与拼成的平行四边形的面积有什么关系?
生:每个三角形的面积是拼成的平行四边形的面积的一半。
生:拼成的平行四边形是每个三角形面积的二倍。(教师给予评价、肯定)
[设计意图:通过动手操作和小组合作学习,再观察演示使同学们更具体、清晰地弄清了将两个完全一样的三角形拼成平行四边形后,它们之间到底有什么关系。让学生通过推导,增强学生探索的兴趣,提高学生推理的能力。]
3、讨论与归纳公式
(1)讨论:(小黑板出示问题)
①、三角形的底和高与平行四边形的底和高有什么关系?
②、怎样求三角形的面积?
③、你能归纳出三角形的面积计算公式吗?
[设计意图:借助图形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]
(2)归纳公式。
学生讨论、汇报:
因为:三角形面积=拼成的平行四边形面积÷2
所以:三角形面积=底×高÷2
教师板书:三角形面积=底×高÷2
师:为什么要除以2?
生:因为是两个完全一样的三角形拼成一个平行四边形,所以三角形的面积是拼成的平行四边形面积的一半
师:如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?
结合学生回答,教师板书:s=ah÷2
[设计意图:把求三角形的面积转化成已学习过的平行四边形面积,找到它们之间的关系,使学生感知了三角形面积的计算后,去讨论:“三角形面积的计算公式是怎样的?” “为什么要除以2?”以先入为主,从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,突破教学的重点和难点,增强学生探究的兴趣、提高学生推理的能力,培养学生的抽象概括能力。]
4、看书质疑。
师:你能说说,课本中是怎样得出三角形的面积计算公式的?
(充分利用好教材,学生加深对知识的认知,养成看书的良好习惯。)
师:除了用两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你还能用别的方法去推导三角形的面积公式吗?
如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定。(略讲)
三、应用新知,解决问题
师:现在同学们能帮老师解决问题了吗?
1、计算一条红领巾的面积。
师:你能估算出这条红领巾的底和高各是多少吗?
师:这条红领巾的底是100cm,高是33cm,你能计算出它的面积是多少吗?
学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。
师:计算三角形的面积,应注意什么地方?(强调“÷2”和“底和高要对应”这两个重点、难点。)
2、独立完成p85做一做。
学生板演,教师点评。
[设计意图:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]
四、深化理解、应用拓展
1、课本86页的练习第1题。(课件出示)
师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?
(让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)
2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。
师:要求上面每个三角形的面积,需要知道什么条件呢?要怎么做?
(先让学生想,再请学生口头叙述,最后让学生动手操作计算、评讲,培养学生的数学语言表达能力。)
3、判断题
(1)三角形面积是平行四边形面积的一半。( )
(2)一个平行四边形面积是40平方米,与它等底等高三角形面积为20平方米。( )
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
(4)等底等高的两个三角形,面积一定相等。( )
(5)两个三角形一定可以拼成一个平行四边形。( )
4、求右图三角形面积。
(要计算上图的三角形面积,强调三角形的底和高一定是对应的。)
5、课本86页第3题:已知一个三角形的面积和底
(如右图),求高。
师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗?
(生讨论汇报,再计算、反馈。)
6、做课本86页第4题(然后汇报、评讲。)
要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?
[设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]
五、总结
师:今天这节课,我们主要学习了什么知识?你有什么收获?
(小出示)让学生说一说图意:
师:很好!今天我们通过分“四人小组”动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的平行四边形推导出了三角形面积的计算公式,这种“转化”的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。
[设计意图:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]
六、课外作业
课本第87页“练习十六”第5、6、7题。
板书设计
三 角 形 的 面 积
平行四边形的面积=底×高
s=ah÷2
=100×33÷2
=1650(cm)
三角形面积=底×高÷2
s=ah÷2
教材分析:
三角形面积的计算是在学生掌握了平行四边形面积的计算方法的基础上进行教学的。由于在前面的学习中,学生对转化的数学思想有了初步的了解和认识,因此可以通过知识的迁移,放手让学生探究三角形面积的计算方法。本节课的重点在于让学生理解、掌握平行四边形面积的计算公式,而通过学生自主探究、发现三角形面积计算公式的推导过程则是本节课的难点。
设计思路:
本节课的设计力求体现“以学生发展为本”的教学理念,让学生在学习小组内,通过折一折、剪一剪、拼一拼的操作,亲身经历新知的形成过程,体验“转化”思想在几何体知识中的作用。同时在获取新知的过程中大胆放手,让学生充分运用旧知进行迁移,自主探索,培养学生的创新知识和创新能力。
采取小组学习的教学形式,为学生营造一种宽松、自由的探索氛围。
教学准备:
1、 每人准备一个学具袋,内有两个完全一样的直角三角形、锐角三角形、钝角三角形,一个长方形,一个平行四边形,大小各异的任意三角形3个;
2、 量具一张,铅笔一支,剪刀一把;
3、 视频展示台、电脑、实物投影仪。
教学过程:
一、揭示课题
师:上一节课我们研究了平行四边形面积的计算方法,怎样计算平行四边形的面积?
我们是怎样发现这一计算公式的?
①学生回忆公式推导过程。
②电脑动画演示。
小结:将图形转化成我们会求面积的图形,是一种重要的数学研究方法。今天我们用同样的办法研究三角形面积的计算。
揭示课题——三角形面积的计算
二、探究新知
1、学生操作
每位同学都一袋学具,看看谁能利用这些图形发现三角形面积的计算方法。
a、 学生动手操作;
b、老师巡视。
学生把自己的发现用教具贴在黑板上。
2、汇报、交流
师:观察这些图形,你发现了什么?
a、 学生在小组内互相说。
b、指名说。
3、推导公式
师:根据你们的发现,你能推导出三角形面积的计算公式吗?
学生小组讨论,说说自己是怎样推导的。
教师根据学生的回答动态演示课件,帮助学生直观建立转化思想,清楚地理解公式推导的由来。
4、小结
刚才我们通过剪、拼、割、补等方法,推导出三角形面积计算公式。
说一说:三角形面积计算公式是什么呢?如果用s表示面积,a、h分别表示底和高,用字母怎样表示公式?
板书:
三角形的面积=底×高÷2=a h÷2
一、教学目标:
1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。
2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。
3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
二、教材分析:
三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。
三、学校及学生状况分析:
我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的快慢程度等也会出现差异。
四、教学设计:
(一)由谈话导入新课。
1、我们已经学过长方形、正方形、平行四边形面积的计算公式。
还记得它们的面积公式吗?(一人回答)
还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?
小结:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。
2。谁知道三角形面积的计算公式?
老师调查一下:
①知道三角形面积计算公式的举手。(可能多)
②不知道三角形面积计算公式的举手。(可能不多)
③不但知道公式,而且还知道怎样推导出来的举手。(可能不多)
今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程
[板书课题:三角形面积]
(二)探究活动。
根据你们前面的学习经验,猜一猜应怎样去探究三角形的面积?[板书:转化]
下面我们将按小组来探究三角形面积的计算公式。
1、介绍学具袋中的学具。
2、出示探究目标和建议
小组合作探究活动,三角形面积的计算公式是怎样推导出来的?
建议:边动手、边想、边说。
(1) 你把三角形转化成了你以前学过的什么图形?
(2)原来的三角形和转化后的图形有什么关系?
(3) 三角形面积的计算公式是什么? 为什么?
3、同学们自选学具,想一想就可以开始了……
(教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)
了解一下学生们探究了几种方法(至少保证每人找到一种方法)后,叫停。(此时注意发现不同方法)
4、汇报:请××同学展示自己的探究成果,在他说的时候,同学们要注意听,以便予以补充。(交流过程注意引发学生间的争论)
① 直接用两个完全一样的三角形拼成平行四边形推导……
② 用一个三角形折成长方形推导……
③ 将一个三角形用割补法推导……
(若学生用任意三角形,注意指导沿“中位线”剪开)
……
5、师生共同小结:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,于是[随即板书] 三角形的面积=底×高÷2 s=a×h÷2
6、请同学再用自己喜欢的其中一种方法说说为什么?(扩大战果)
总起来说,不管同学们用一个三角形,还是用两个三角形;也不管是用拼摆的方法,还是用割补的方法,都是在想方设法将新知识转化为旧知识。可见,你们学习的时候很注重学习方法,而且“转化”的这种数学思想正在你的头脑里逐渐形成。
(三)巩固练习(机动)
我们来试着运用这个公式:
1 基本题 先问:要想求三角形的面积必须知道什么条件?再出示数据,然后计算。
2 基本题
3 基本题
(由2、3题解决“等底等高三角形面积相等”)
4 提高题 有一直角等腰三角形,它的斜边是10厘米,你会求它的面积吗?
(四)总结
说说你这节课的感受?
(重点总结心得体会或经验教训。)
五、教学反思:
新课标不仅对学生的认知发展水平提出了要求,同时也对学生学习过程、方法、情感、态度、价值观方面的发展也提出了要求。新理念注重学生的学,强调学生学习的.过程与方法,这是引导学生学会学习的关键。
如果我们将数学公式的教学仅仅看成是一般数学知识的传授,那么它就是一个僵死的教条,只有发现了数学的思想方法和精神实质,才能演绎出生动结论。
这节课,我将知识目标定位为:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。能力目标定位为:在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。情感和意志目标定位为:激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
整节课是围绕着“通过学生发现三角形与已知图形的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子,比如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。
这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。
六、案例点评
本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。
教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。
通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。
数学五年级《三角形的特征和面积》教学设计
教学内容:
三角形的认识
教学目标:
1.使学生理解三角形的意义,掌握三角形的特征和特性,能按角的.不同给三角形分类。
2.培养学生观察能力和动手操作能力。
教学重点:
正确认识三角形及其分类。
教学难点:
正确掌握画三角形高的方法。
教学过程:
一、联系生活,课前调查
课前调查:找一找,生活中有哪些物体的外形或表面是三角形?请收集和拍摄这类的图片。
二、创设情境,导入新课
1、课件出现教材情境图,说说在图中看到了什么图形。
2、让学生说说生活中见到的三角形
投影展示:学生展示收集到的有关三角形的图片。
3.演示课件三角形出示下图
4、导入新课
教师导入:看来生活中的三角形无处不在.关于三角形你还想了解它什么?
整理学生发言,并提出以下学习目标
(1)什么叫三角形?
(2)三角形有哪些特征?
(3)三角形具有什么特性?
(4)三角形怎样分类?
今天我们就一起来认识三角形。(板书课题:三角形)
三、师生互动,引导探索
1.教学三角形的意义。
(1)教师:请同学们拿出三根小棒,如果把每根小棒看做是三角形的一条边,你们分组摆一摆,并
互相交流一下,知道了什么?
(2)继续演示课件三角形
教师:看一看哪组和你摆的一样,它们是三角形吗?
(3)分组讨论:如果我们摆三角形用的三根小棒看作三条线段,那么什么样的图形叫做三角形呢?
(4)教师演示三根小棒是怎样摆的,从而使学生知道一根接着一根连在一起的,随后明确这是围成
的。(板书:围成)
(5)揭示概念
教师启发同学互相补充,口述三角形的含义。(教师板书)
(6)练一练:继续演示课件三角形
2.教学三角形的特征
(1)自学:①三角形各部分名称叫什么?
②三角形有几条边、几个角、几个顶点?
(2)继续演示课件三角形出示三角形各部分名称。
教师提问:什么叫三角形的边?三角形有几条边?
同桌讨论:这些三角形都有哪此共同的特征?
《三角形面积》教学设计
教学内容:
人教版义务教育课程标准实验教科书《小学数学》五年级上册第五单元第84-86页。
教学目标:
通过用面积单位测量三角形的面积探索出计算三角形的方法,从而概括出求三角的面积公式,通过间接测量体会数学的简捷美。
教学过程:
一、用直接测量法计算面积
1.老师指导学生把给定的三角形画在绘画纸(1 ㎝×1 ㎝)上,如下图:
2.学生计算三角形的面积。
3.汇报,可能说:正好是一个单位的面积太少了,计算三角形的面积也太难了吧。
二、用转化法计算面积
老师引导学生:学习平行四边形面积时,把平行四边形转化为长方形,现在我们如何把三角形变成学过的图形使计算变得比较简便呢?学生可能说:
1.在直角三角形的右上角再画一个同样的直角三角形,就变成一个长方形,长方形的面积是12㎝2,三角形的面积是长方形的一半,是6㎝2。锐角三角形和钝角三角形就不好办了。
2.在锐角三角形右边的右边再画一个同样的三角形,就变成一个平行四边形,平行四边形的面积是12㎝2,三角形的面积是平行四边形的一半,是6㎝2。
3.还可以用同样的方法计算钝角三角形的面积是6㎝2。
4.在直角三角形的左边再画一个同样的三角形,也是变成一个平行四边形。这样,所有的三角形都变成平行四边形,面积是平行四边形的一半。
5.在高的一半的地方剪开,上半部分旋转一下,变成一个平行四边形,它的面积与三角形的一样,是6㎝2。
三、概括面积公式
老师适时引导学生用任意三角形通过间接测量法归纳三角形的面积公式,学生可能说:
1.计算平行四边形面积用间接测量法测量底和高的长度,三角形也是底和高互相垂直,也应该是测量底和高的长度。
2.用两个完全同样的三角形拼成一个平行四边形,平行四边形的面积=底×高,三角形的面积是平行四边形面积的一半,所以三角形的面积S=ah÷2。
3.在高的一半的地方剪开,上半部分旋转一下,变成一个平行四边形,平行四边形的底就是三角形的底,它的高是三角形的高的一半,平行四边形的.面积就是三角形的面积,三角形的面积=平行四边形的面积=底×高的一半,所以三角形的面积S=ah÷2。
四、运用知识,解决问题
1.出示例1:
2.辨认图形,运用面积公式列式计算。
S=ah÷2
=100×33÷2
=1650(㎝2)
3.做一做:见教材。
五、巩固练习
练习十六第85页第1、2、3题。
教学反思:
学习三角形的面积时,教材出于默认的理由而没有编排数格子,从平行四边形不可能完全测量可以推出三角形更不可能完全测量。因此造成了三角形面积教学忽视培养二维空间观念的后果。本设计让学生继续数格子,目的在于使学生能直观地找到将未知图形转化成已知图形的方法。完整单位的格子少,不完整单位的格子其形状不规则,转化和探索成学生必须的选择。在数格子的过程中学生既认识用面积单位测量的局限性和长度测量的便捷性,又可以体验转化方法的多样性和各种方法的内在联系。
在学习中,学生认识到面积的计算都必须依靠互相垂直两条线段,长方形的两条边互相垂直,这两条边长度相乘的积就是它的面积;平行四边形垂直的两条线段不再是邻边,而是底和高,所以底和高长度相乘的积是它的面积;而三角形用底和高的长度算不出面积,还得再乘上一个系数1/2。
六年级数学教案《三角形的面积》教学设计
教学内容:九年义务教育六年制小学数学教科书第九册69页至71页。
教学目标:
1.通过指导实际操作,帮助学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积;
2.使学生明白事物之间是相互联系,可以转化和变换的。
3.通过交流,观察、比较,培养学生发现问题、提出问题、分析问题、解决问题的能力,发展学生的空间观念。
教学重点:探究三角形面积公式的推导过程,掌握和运用三角形面积计算公式进行计算。
教学难点:理解三角形面积计算公式。
设计特色:针对本课的知识特点,课前设计目的性明确、可操作性强的前置性作业,充分调动学生学习的热情,提高课前预习的效果,为成功的课堂教学做好铺垫;在课堂上,运用小组交流的学习方式,每个成员都有机会展示自己,小组交流后再进行全班的汇报,根据学生汇报的情况教师有目的地板书,然后引导学生观察、比较,进而推导出三角形的面积计算公式。
教学过程:
一、导入:
1、平行四边形面积计算公式是怎样推导的?
总结:把没学的图形转化成已经学过的图形从而推导出面积计算公式。
2、今天,我们也用同样的方法推导三角形面积计算公式,板书课题。
二、讨论
小组交流课前小研究。
三、推导
1、汇报课前研究的方法,老师根据学生的汇报有目的地板书。
2、推导三角形面积计算的公式。
四、应用
1、教学例1
2、强调格式
五、练习
1、下面平行四边形的面积是12平方厘米,斜线部分三角形的面积是多少?
(口答,并说出理由)
2、判断:
(1)三角形的面积是平行四边形面积的一半。()
(2)三角形的高是2分米,底是5分米,面积是10分米。()
3、说出求下面三角形的面积
板书设计:
课前小研究
研究者:班级:
前言:我们已经学过用转化的方法,把平行四边形转化成已经学过的图形,从而推导出它的面积计算公式,请你想一想:能否也把三角形转化成我们已经学过的图形,从而研究三角形面积的计算方法?
(可以在学具盒或在附图中选材料)
1、我用的材料是:
我的.做法(文字或画图表示):
我的结论:
2、我用的材料是:
我的做法(文字或画图表示):
我的结论:
3、我用的材料是:
我的做法(文字或画图表示):
我的结论:
4、我用的材料是:
我的做法(文字或画图表示):
我的结论:
附图2
材料一
材料二
【微语】我想象不出还有什么比父亲的保护更让一个孩子渴求得强烈。——西格蒙特佛洛依德