培训啦 考试资料 > 教学设计

有理数加法教学设计(通用10篇)

教培参考

教育培训行业知识型媒体

发布时间: 2024年11月23日 22:39

有理数加法教学设计(1)

1.教学目标

1.1地位、作用

在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。

1.2学情分析

在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂。因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障。围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力。

另一方面,课本知识的传授是符合学生的认知发展特点的。在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础。

1.3教学目标

根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:

知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用。

能力目标:通过情境的设计,培养学生的探索创新精神。在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力。

情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣。

1.4教材处理

根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算。

2.重点、难点

2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则)。

2.2教学难点:异号两数加法的实际意义及法则的归纳。

3.教学方法与教学手段

本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力。

在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区。

4.教学过程:

4.1创设情境,让学生的思维“动”起来

[生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲。从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志。将跑道抽象为数轴,起跑点为原点,将生活问题数学化。

说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索。

4.2体验进程,让学生的思维“活”起来

“数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲。

[开放式探索] 刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米。问刘翔两次以后的位置可能在哪里? 设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性。它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟。这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题。在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化。

教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导。

预计困难:

①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方。这是一个距离与位移的概念混淆并且教学中不宜新增概念。

②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃。

处理方法:

①教学中学生思维上的弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈。

②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼 。

③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区。

教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝 止,不深究问题的所有可能性,剪辑学生答案尽快引出课题。

4.3探究规律,让学生的思维“跳”起来

用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少。在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲。让学生作课堂的主人,陈述自己的结果。对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径。

预先设想学生思路,可能从以下方面分类归纳,探索规律:

①从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)

②从加数的不同数值情况(加数为整数;加数为小数)

③从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)

④从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)

⑤从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)

教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏。

有理数加法教学设计(2)

【教学目标】

1.会进行有理数加法运算.

2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算.

3.会将有理数的减法运算转换成加法运算.

4.会进行加减混合运算.

此外,感受有理数加法法则的合理性以及“分类”的思想方法,感受有理数减法与加法的对立统一,体

会“化归”的思想方法.

【教学过程设计建议(第一课时)】

1.情境创设

除课本提供的情境外,还可以用学生熟悉的生活实例,如用水位变化、存钱取钱等问题引进有理数加法.例如:

第1天水位上涨了3 cm,第2天上涨了2 cm,两天共上涨了多少?第1天水位上涨了3 cm,第2天下降了2 cm,两天共上涨了多少?第1天水位下降了3 cm,第2天下降了2 cm,两天共下降了多少?第1天水位上涨了3 cm,第2天不升也不降,两天共上涨了多少?

如果将上涨记为正,上涨“3 cm"可记为“3”,下降记为负,下降“2 cm"可记为“一2”,你能用含正、负数的算式表示水位的变化过程和结果吗?两天的水位还

可能出现哪些变化?请用含正、负数的算式表示变化过程和变化结果.

2.探索活动

(1)需要特别注意的是,算式“( 3) (一2)= 1”

只是借助正、负号,记录计算净胜球的计算过程与结果,算式的左边是加法,而右边的“1”是根据生活经验得到的.

课本提供的情境是“先赢后输”、“累计为赢”的类型,在将其写成含正、负数的算式并根据生活经验得出结果后,可问学生:除“先赢后输”外,两场比赛的结果还会出现哪些情况?在学生列举出“赢了再赢”,“先输后赢”,“输了再输”,“先赢后平”,“先平后赢”及“平局”等情况后,再让学生填写净胜球计算表,感受两个有理数相加的各种情况,提高学生探求运算规律的积极性.

与小学不同的是,由于有理数由符号和绝对值两部分组成,所以运算时既要考虑符号也要考虑绝对值.例如,首先要确定两场比赛的输赢,这是符号问题,然

后确定输赢球的个数,这是绝对值问题.

(2)设置“数学实验室”的目的是让学生从“形”上感受有理数的加法运算法则.采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解.

3.例题教学

例1第(1)小题是求一个正数与一个负数的和;第(2)小题是求两个负数的和;第(3)小题是求两个互为相反数的和;第(4)小题是求0与一个有理数的和.为突出运算法则,4个题目都设计为简单的整数运算.

学生应能熟练进行有理数的加法运算,但运算难度要以《标准》要求为准.教师在补充例题、习题时不宜在数字运算上设置障碍,当学生熟练掌握运算法则后,随着知识的积累、技能的提高、数感的增强、计算器的引入,学生处理繁难运算的能力也会逐渐增强。

【教学过程设计建议(第二课时)】

1.探索活动

从复习有理数的加法运算开始,由问题“在含有负数的加法运算中,加法交换律和结合律还成立吗?”引发思考,让学生感受验证的必要性,主动投入验证活动.采用在几何图形中填数字的验证方法,直观性强且易于操作.通过心算、观察、比较及更改数字等活动,学生很容易认同加法“交换律”和“结合律”的合理性.这种验证方法也适用于乘法对于加法的分配律.

在认同加法“交换律”和“结合律”后,可让学生口述这两个运算律,然后再用字母来表述,从中体会用字母表示数的优越性.

此外,按课本中对扑克牌的约定,随意抽取扑克牌进行计算,也是验证有理数加法运算律的好办法.

2.例题教学

例2没有要求“用运算律进行计算”,只是通过卡通人的旁白告诉学生“这样算简便”,让学生感受有时可以用运算律简化运算,练习和作业时不宜强求学生要用运算律来运算.

【教学过程设计建议(第三课时)】

1.情境创设

小丽从观察温度计上的读数出发,借助生活经验得出了日温差;小明由减法的意义,利用加法“凑”出了日温差.教学时可让学生直接观察温度计,也可制作温度计的教学课件或利用数轴演示日温差.

2.探索活动

(1)用问题串引导学生展开探索活动,例如:

小丽从温度计上看到,从5℃降到一3℃,温差为8℃.你认为小丽的结论正确吗?小丽是在做加法运算还是在做减法运算?

小明根据“日温差”的意义,联想小学里加法与减法的关系,“算出”日温差也是8℃.你认为他的算法行吗?说说你的理由.

小明与小丽的结论相同,是偶然巧合吗?请举例说明.

(2)比较小明与小丽的算式,感受有理数减法运算转化为加法运算的转化过程:减号变为加号,减数变为它的相反数.

3.例题教学

例3、例4的教学中,要注重“减法转化为加法”的过程,引导学生加深对“减去一个数等于加上这个数的相反数”的认识.例4之后,课本指出有理数的加、减法运算可以统一为加法运算,并出现了“2 5—8”可以看成“2 5 (一8)”这样的例子,但没有提出“代数和”的概念.

设计课本上“练一练”的程序运算和习题第ll题的仿“幻方”问题,是为了吸引学生积极参与,用寓教于乐的方式提升学生的运算能力.可以在此基础上,让学生自行设计一些易于操作的有趣活动,进行有理数加、减混合运算的练习.

教学中,如有必要可适当补充加、减混合运算的例题、习题.

4.小结

除对有理数加、减法的运算法则进行小结外,还应向学生指出,由于有理数的减法运算可以转化为加法运算,所以,小学里无法解决的被减数比减数小的减法问题,现在就有了合理的解释.换言之,在有理数范围内减法运算总可以实施.但是,两个有理数相减,差不一定比被减数小,这就是引进负数后对运算带来的重大变化.

有理数加法教学设计(3)

一、教材分析

分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。

2、就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分----有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

从以上两点不难看出它的地位和作用都是很重要的。

接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)

教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。

1、知识目标是:

(1)理解有理数加法的意义;

(2)理解并掌握有理数加法的法则;

(3)应用有理数加法法则进行准确运算;

(4)渗透数形结合的思想。

2、能力目标是:

(1)培养学生准确运算的能力;

(2)培养学生归纳总结知识的能力;

3、德育目标是:

(1)渗透由特殊到一般的辩证唯物主义思想;

(2)培养学生严谨的思维品质。

有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。

二、教材处理

本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

三、教学方法和数学孚段

在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

四、教学过程的设计。

1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。

2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。

3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

课堂设计及课后反思

我9月19号在阿城市第五中学上了一堂数学公开课,由于得到通知的时间比较仓促,所以准备的不算充分。在各个方面一定存在着疏漏和缺陷,在这里请大家多多指教。我主要从以下几个方面加以说明。

一、问题的引入:在问题的引入上。新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲。我采用了敌军对我军进行小规模军事侦察的问题,使学生处在一个指挥官的角色。对问题提出解决的办法,并且在对学生提出的各种情况,作出实际的操作,使学生明白数学在解决实际问题中的应用。我感觉在问题的引入上问题过于简单,使学生思考的范围过于局限。没有出现比较热烈的学习气氛。所以问题的引入应加大深度,应具有一定的`挑战性。

二、问题的探索:在问题的探索上,我采用了一个小人在坐标轴上来回行走,产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在法则的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学生出现的问题我给作出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。

三、习题的配备:整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方法,使学生对加法法则的理解进一步的加强。在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。在最后的习题配备上,让学生对两个加数及和之间的关系作出判断,并且对各种情况作出讨论,达到本节课的一个高潮。促使学生的思路得到进一步的加强。但我总体感觉习题的量不够充足,学生的练习机会较少。

四、总之在整个教学过程的实施中,出现了一些问题,也有一些不尽人意的地方。希望大家批评指正。

有理数加法教学设计(4)

教学目标

1.了解有理数加法的意义,理解有理数加法法则的合理性;

2.能运用有理数加法法则,正确进行有理数加法运算;

3.经历探索有理数加法法则的过程,感受数学学习的方法;

4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力.

教学重点

能运用有理数加法法则,正确进行有理数加法运算.

教学难点

经历探索有理数加法法则的过程,感受数学学习的方法.

教学过程(教师)

一、创设情境

小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?

1.试一试

甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.

你能把上面比赛的过程及结果用有理数的算式表示出来吗?

做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:

2.我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流.

你还能举出一些应用有理数加法的实际例子吗?

二、探究归纳

1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上.

用数轴和算式可以将以上过程及结果分别表示为:

算式:

2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.

用数轴和算式可以将以上过程及结果分别表示为:

算式:

3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?

请用数轴和算式分别表示以上过程及结果:

算式:

仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.

4.观察、思考、讨论、交流并得出有理数加法法则.

讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?

有理数加法教学设计(5)

《有理数加法法则》是华东师大版教材七年级上册第二章第六节第一课时内容,主要是通过问题情境理解有理数加法的意义,探究、总结、归纳有理数的加法法则,并能根据有理数加法法则进行有理数加法运算,它是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础。

教法:以学生为主体创设问题情境,通过设计问题串,诱导学生探究、总结、归纳有理数的加法法则,并能自主运用法则进行计算。重点突出异号两数相加,明确有理数的加法,名义上是加,但实际上同号是加,异号则要转化成减法。最后将巩固法则融入游戏中,并将法则编成顺口溜,活跃课堂气氛,让学生学得轻松。

学法:认真听讲,积极思考回答老师提出的问题,自主分类归纳有理数的加法法则,通过将法则巩固融入游戏、顺口溜中,让学生学得轻松,乐于学习,并提高学习的兴趣。

教学目标:

1、理解加法的意义。

2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。

3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。

教学重点:法则的探索与应用

教学难点:异号两数相加

教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。

教学过程:

一、复习回顾

1、一个不为零的有理数可以看做是由哪两部分组成的?

2、比较下列各组数绝对值哪个大?

①-22与30;②-与;③-4.5和6

3、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?

(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。)

二、新知探究

1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。

2、你还能举出类似用加法运算的实例吗?

3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?

4、总结归纳有理数的加法法则。

突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。

(设置问题情境,探究、总结、归纳法则。对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,然后说出这些算式的实际意义更利于理解加法的意义。我认为只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些。)

三、运用法则

例:计算

(1)(+2)+(-11) (2)(-12)+(+12) (3)(+20)+(+12)

(4)(- )+(- ) (5)(-3.4)+(+4.3) (6)(-5.9)+0

思维过程:一“看”二“定”三“和差”

(主要是通过设置一组题目,理解法则,并展现思维过程“一看、二定、三和差”,规范学生的解题过程)

四、巩固法则

1、开火车游戏。

第一位同学说一个算式,第二位同学说答案,第三位同学接着说一个加法算式,第四位同学说答案,依次类推,谁卡住,谁表演节目。

2、填数游戏。

将-8,-6,-4,-2,0,2,4,6,8这9个数分别填入右图的9个空格中,使得每行的三个数,每列的三个数,斜对角的三个数相加均为0

3、思考:两个有理数相加,和一定大于每一个加数吗?

(设置了两个游戏:开火车和填数,另外就是打破了小学的思维定势“和总是大于加数”,引入负数后,是有变化的。设置问题“两个有理数相加,和一定大于每一个加数吗?”让学生对有理数加法理解的更深一些。)

五、小结

加法顺口溜:有理加减不含糊,同号异号分清楚;同号相加号相随,异号相减号大绝;相反数、和为0;碰见0、不变形。

(用一段“顺口溜”识记加法法则)

六、作业设计

1、练习完成在书上,习题1~2完成在作业本上。

2、在圆圈内填上彼此都不相等的数,使得每条线上的三个数之和为0。

五、小结:用一段“顺口溜”识记加法法则。

反思:“运算能力”是修订后的课程标准提出的“十大核心概念”之一,而“有理数加法”是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础,有理数加法法则是有理数加法运算的准绳,更是难倒了一大片初学者,有的同学学习了有理数的加法法则不但不能叙述法则,反倒连小学学过的非负数的加法运算也不会了,如何突破这个障碍,我认为关键还是加法意义的理解,应让学生置身于现实情境中搞清楚加法究竟是怎么回事,这样一来“和”的符号的确定与“和”的绝对值的确定也就是顺理成章的事儿了。

对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,熟知加法就是连续两次变化的总结果,然后再给这些算式赋予新的实际意义更利于理解加法的意义。其实,只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些,通过操作,学生对于将算式置于实际情景非常感兴趣。对于接下来将算式按加数分类,探究和的符号与加数符号的关系,还有和的绝对值与加数绝对值的关系都有着浓厚的兴趣,尤其是得到“互为相反的两数相加和为零”时就有学生提到:异号两数相加其实就是正负一抵消,余下的部分就是和。看来只要在课堂上通过适当的引导让学生自身释放出琢磨的能量比让学生打开大脑的录音系统录音要好得多。通过后续学习的考察,学生对于加法法则的记忆与应用并非停留在表面的记忆上,而是对法则有了更深层次的理解,也没有学生刻意追求用教材上的句子一字不漏地来叙述加法法则,他们都能用自己理解的语言来说明到底是为什么。

再思考:这节课是我调入新的学校上的汇报课,领导还有同事们对我的课都做出了中肯的点评,最后一位颇有资历的领导谈到:数学教学应体现其本质,用“数轴”探究有理数的的加法更能体现加法的本质,授课者应做好合理的应用。换言之,本节课未能很好体现加法的本质。个人思考再三认为加法的本质就是“连续两次变化的总结果”,用数轴表示向东走向西走,还是举生活中的盈亏实例等都体现了加法的本质。新旧版本的华师大教材都是以“数轴”为载体探究有理数加法法则的,这种载体的应用主要凸显了直观,变化的结果一清二楚,也体现了数与形的有效结合,无疑是一种很好而有效的载体,但我们为什么不在教材现有载体的基础上做一些突破,让学生从多角度多方位理解加法运算呢!其实现实生活中的“盈”与“亏”生活气息浓郁,且学生熟知,会吸引众多的学生参与,“同号相加”就是“盈盈”型或“亏亏”型,“异号两数相加”就是“盈亏”型,(+5)+(-5)为什么是0?显然盈亏一样,最终兜里没钱!而(+3)+(-10)为什么结果取“-”且用“10-3”,盈少亏多呗!最终还是亏了7元!将加法置身于这样的情景更有利于理解加法的意义,总结加法法则,理解加法法则。

有理数加法教学设计(6)

【教学目标】

1.理解有理数加法的实际意义;

2.会作简单的加法计算;

3.感受到原来用减法算的问题现在也可以用加法算.

【对话探索设计】

〖探索1〗

(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?

(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?

(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥,两天一共运进多少吨?

(4)把第(3)题的算式列为300+(-200),有道理吗?

(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?

〖探索2〗

如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?

假设原点为运动起点,用下面的数轴检验你的答案.

在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?

〖小游戏〗

(请一位同学到黑板前)前进5步,又前进-3步,那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?

〖练习〗

1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?

2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?

〖补充作业〗

1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):

(1)温度由下降;

(2)仓库原有化肥200t,又运进-120t;

(3)标准重量是,超过标准重量;

(4)第一天盈利-300元,第二天盈利100元.

2.借助数轴用加法计算:

(1)前进,又前进,那么两次运动后总的结果是什么?

(2)上午8时的气温是,下午5时的气温比上午8时下降,下午5时的气温是多少?

3.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?

有理数加法教学设计(7)

第3章有理数的运算

3.1有理数的加法与减法

第2课时

教学目标

1.能运用加法运算律简化加法运算.

2.理解加法运算律在加法运算中的作用,适当进行计算以及训练.

3.培养学生的观察能力和思考能力,经历对有理数的运算,领悟解决问题应选择适当的方法,在数学学习中获得成功的体验。

教学难点

如何运用加法运算律简化运算

知识重点

灵活运用加法运算律

教学过程(师生活动)

设计原则

复习知识

引入课题

通过展示四道题目,让学生分析是运用哪条有理数加法法则,进而进一步总结复习有理数加法法则。

师提问:有理数加法运算能不能更简便呢?我们这节课就来探讨一下。.

(出示课题)有理数的加法运算律

让学生感受到有理数的运算在实际中是很简单的,激发学生学习新知识的兴趣.

分析问题

探究新知

1.让学生运用有理数加法法则自主运算.

注意:符号的确定是由几种情况决定的①同号两数相加,取相同的符号.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号.

2.观察四组算式中的加数和他们的和,提问:有什么发现?从加数的位置,和的角度探讨.

3.通过练习和讨论,引导学生得出:

交换律--两个有理数相加,交换加数的位置,和不变.

用代数式表示:a+b=b+a.

运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.

4.两个运算律分别是交换律和结合律,在得出交换律的基础上,运用同样的推导方法进行归纳总结。

(1)(小组合作)自主做题,将步骤和答案写出,并将答案在小组里订正.

(2)交流汇报.从运算顺序,和的角度进行探讨.(各学习小组的汇报结果,用实物投影仪展示)

(3)说一说运用的加法法则是什么?(①运算顺序,②和)指导学生用自己的语言进行归纳.

(4)在学生归纳的基础上,教师出示有理数加法运算律:结合律.

结合律--三个数相加,先把前两个数相加,或者先把后两个数相加,它们的和不变.

用代数式表示:a+(b+c)=(a+b)+c

(用投影仪展示)

有理数加法交换律:

1.两个数相加,交换加数的位置,和不变.

2.三个数相加,先把前两个数相加,或者先把后两个数相加,它们的和不变.

让学生在情境中感受到有理数运算使用的两个运算律,渗透分类讨论思想.

教师需对学生进行相应,点拨、指导,引导学生对有理数相加运算时进行相应的步骤,体现教师的引领作用.

①交换律是两个加数相加,结合律是三个加数相加,那四个数相加或者更多的数相加也可以运用交换律和结合律.

②教师巡堂随时进行相关的指导,关注每一们学生及各个学习小组的活动情况,及时做好引导.

解决问题

解决问题(板书或用投影仪进行展示)

例1计算:

下列运用加法交换律的变形中,错误的是()

A.30+20=20+30

B.(-5)+(-13)=(-13)+(-5)

C.(-37)+16=16+(-37)

D.10+(-20)=20+(-10)

教师板演,让学生说出加法交换律的应用方法.

例2计算:

(+23)+(?12)+(+7)

例3计算:

(?1/3)+(?5/2)+(?2/3)+(+1/2)

引导学生,让学生明确做有理数的加法应怎样运用两条运算律:(1)加法交换律;(2)加法结合律.

学生活动:请学生总结做题过程中运用哪些方法可以简化运算。

注意点:(1)学会运用运算律解题.(2)教师板演的例题要完整体现过程,并要求学生在刚开始学的时候要把中间的过程写完整.(3)体现化归思想.(4)这里增加了两道题目,要是让学生能较为熟练地运用运算律进行计算.

拓宽学生视野,让学

生体会到数学与实践的密切联系。

课堂练习

导学案上的练习题

小结与作业

课堂小结

通过这一节课的学习,你有何收获?(让学生口答)

本课作业

必做题:阅读教科书第47页,教科书第49页练习题1、2题。

本课教育评注(课堂设计原则,实际教学效果及改进设想)

教后反思:本节课的难点是运用交换律和结合律进行加法运算,学生在学习过程中很容易总结出来,但是同时运用两个规律解题就不知道怎么来运算。要引导学生从做题过程中总结几种方法,课下多加练习进行巩固。

有理数加法教学设计(8)

【目标预览】

知识技能:

1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;

2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。

数学思考:

1、正确地进行有理数的加法运算;

2、用数形结合的思想方法得出有理数加法法则。

解决问题:能运用有理数加法解决实际问题。

情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。

【教学重点和难点】

重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算; 难点:异号两数如何相加的法则。

【情景设计】

我们来看一个大家熟悉的实际问题:

足球比赛中进球个数与失球个数是相反意义的量.若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:-2。它们的和为净胜球数:(+3)+(-2)学校足球队在一场比赛中的胜负情况如下:

(1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(-2)

(2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(-1)

这里,就需要用到正数与负数的加法。

下面,我们利用数轴一起来讨论有理数的加法规律。

【探求新知】

一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢? 利用数轴演示(如图1),把原点假设为运动起点。

两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①

利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:

(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

(4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?

(5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?

(6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?

(7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?

总结:依次可得

(2)(-5)+(-3)=-8②

(3)5+(-3)=2③

(4)3+(-5)=-2④

(5)5+(-5)=0⑤

(6)(-5)+5=0⑥

(7)5+0=5或(-5)+0=-5⑦

观察上述7个算式,自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数。

【范例精析】

例1计算下列算式的结果,并说明理由:

(1)(+4)+(+7);(2)(-4)+(-7);

(3)(+4)+(-7);(4)(+9)+(-4);

(5)(+4)+(-4);(6)(+9)+(-2);

(7)(-9)+(+2);(8)(-9)+0;

(9)0+(+2);(10)0+0.

学生逐题口答后,教师小结:

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

=-(3+9)(和取负号,把绝对值相加)

=-12.

例3 足球循环比赛中,红队胜黄队4﹕1,黄队胜蓝队1﹕0,蓝队胜红队1﹕0,计算各队的净胜球数。

解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。

三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=2;

黄队共进2球,失4球,净胜球数为(+2)+(-4)= -2;

蓝队共进1球,失1球,净胜球数为(+1)+(-1)=0;

【一试身手】

下面请同学们计算下列各题:

(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

全班学生书面练,四位学生板演,教师对学生板演进行讲评.

【总结陈词】

1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。

2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。

有理数加法教学设计(9)

教学目标

1.能运用加法运算律简化加法运算.

2.理解加法运算律在加法运算中的作用,适当进行计算以及训练.

3.培养学生的观察能力和思考能力,经历对有理数的运算,领悟解决问题应选择适当的方法,在数学学习中获得成功的体验。

教学难点

如何运用加法运算律简化运算

知识重点

灵活运用加法运算律

教学过程(师生活动)

设计原则

复习知识

引入课题

通过展示四道题目,让学生分析是运用哪条有理数加法法则,进而进一步总结复习有理数加法法则。

师提问:有理数加法运算能不能更简便呢?我们这节课就来探讨一下。

(出示课题)有理数的加法运算律

让学生感受到有理数的运算在实际中是很简单的,激发学生学习新知识的兴趣

分析问题

探究新知

1.让学生运用有理数加法法则自主运算

注意:符号的确定是由几种情况决定的①同号两数相加,取相同的符号.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号

2.观察四组算式中的加数和他们的和,提问:有什么发现?从加数的位置,和的角度探讨

3.通过练习和讨论,引导学生得出:

交换律--两个有理数相加,交换加数的位置,和不变

用代数式表示:a+b=b+a

运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数

4.两个运算律分别是交换律和结合律,在得出交换律的基础上,运用同样的推导方法进行归纳总结。

(1)(小组合作)自主做题,将步骤和答案写出,并将答案在小组里订正

(2)交流汇报.从运算顺序,和的角度进行探讨.(各学习小组的汇报结果,用实物投影仪展示)

(3)说一说运用的加法法则是什么?(①运算顺序,②和)指导学生用自己的语言进行归纳

(4)在学生归纳的基础上,教师出示有理数加法运算律:结合律

结合律--三个数相加,先把前两个数相加,或者先把后两个数相加,它们的和不变

用代数式表示:a+(b+c)=(a+b)+c

(用投影仪展示)

有理数加法交换律:

1.两个数相加,交换加数的位置,和不变。

2.三个数相加,先把前两个数相加,或者先把后两个数相加,它们的和不变

让学生在情境中感受到有理数运算使用的两个运算律,渗透分类讨论思想

教师需对学生进行相应,点拨、指导,引导学生对有理数相加运算时进行相应的步骤,体现教师的引领作用

①交换律是两个加数相加,结合律是三个加数相加,那四个数相加或者更多的数相加也可以运用交换律和结合律

②教师巡堂随时进行相关的指导,关注每一们学生及各个学习小组的活动情况,及时做好引导

解决问题

解决问题(板书或用投影仪进行展示)

例1计算:

下列运用加法交换律的变形中,错误的是()

A.30+20=20+30

B.(-5)+(-13)=(-13)+(-5)

C.(-37)+16=16+(-37)

D.10+(-20)=20+(-10)

教师板演,让学生说出加法交换律的应用方法.

例2计算:

(+23)+(?12)+(+7)

例3计算:

(?1/3)+(?5/2)+(?2/3)+(+1/2)

引导学生,让学生明确做有理数的加法应怎样运用两条运算律:

(1)加法交换律;

(2)加法结合律.

学生活动:请学生总结做题过程中运用哪些方法可以简化运算。

注意点:

(1)学会运用运算律解题

(2)教师板演的例题要完整体现过程,并要求学生在刚开始学的时候要把中间的过程写完整

(3)体现化归思想

(4)这里增加了两道题目,要是让学生能较为熟练地运用运算律进行计算

拓宽学生视野,让学生体会到数学与实践的密切联系。

课堂练习

导学案上的练习题

小结与作业

课堂小结

通过这一节课的学习,你有何收获?(让学生口答)

本课作业

必做题:阅读教科书第47页,教科书第49页练习题1、2题。

本课教育评注(课堂设计原则,实际教学效果及改进设想)

教后反思:

本节课的难点是运用交换律和结合律进行加法运算,学生在学习过程中很容易总结出来,但是同时运用两个规律解题就不知道怎么来运算。要引导学生从做题过程中总结几种方法,课下多加练习进行巩固。

有理数加法教学设计(10)

七年级《有理数加法(一)》教学设计

在教学工作者开展教学活动前,常常要写一份优秀的教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么优秀的教学设计是什么样的呢?以下是小编收集整理的七年级《有理数加法(一)》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

一、学生起点分析

学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析

对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。教学方法是“引导——分类——归纳”。本课时的教学目标如下:

1.经历探索有理数加法法则的过程,理解有理数的加法法则;

2.能熟练进行整数加法运算;

3.培养学生的数学交流和归纳猜想的能力;

4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

三、教学过程设计

本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。

(一)复习引入,提出问题

活动内容:

1.复习提问:

(1)下列各组数中,哪一个较大?

(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为。

活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。这里先让学生回顾在具体问题中感受正数和负数的加法运算。

2.提出问题:

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.

如果我们用1个表示+1,用1个,那么就表示0,同样也表示0.

(1)计算(-2)+(-3).

在方框中放进2个和3个:

因此,(-2)+(-3)=-5.

用类似的方法计算(2)(-3)+2

(3)3+(-2)

(4)4+(-4)

思考:两个有理数相加,还有哪些不同的情形?举例说明。

引导学生列举两个正数相加,如3+2,一个数和零相加,如0+(-4),4+0。

活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。进而讨论如何进行一般的有理数加法的运算。

活动的实际效果:实际问题情境为学生营造了良好的学习氛围,利于他们积极探究.

(二)活动探究,猜想结论:

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识。

对“一起探究”,教师可引导学生按以下步骤思考:

1、观察列出的'具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。

2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?

3、从中归纳概括出规律

在学生探究的基础上,教师引出规定的加法法则。

在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助。

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳。

活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则.通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程。理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力。

(三)验证明确结论:

例1计算下列算式的结果,并说明理由:

(1)180+(-10)(2)(-10)+(-1);

(3)5+(-5);(4)0+(-2)

活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值.

活动的实际效果:通过习题,加深了学生对有理数加法法则的理解。

(四)运用巩固:

活动内容:

1.口答下列算式的结果

(1)(+4)+(+3);(2)(-4)+(-3);

(3)(+4)+(-3);(4)(+3)+(-4);

(5)(+4)+(-4);(6)(-3)+0

(7)0+(+2);(8)0+0.

活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。

2.请同学们完成书上的随堂练习:

(1)(-25)+(-7);(2)(-13)+5;

(3)(-23)+0;(4)45+(-45)

全班学生书面练习,四位学生板演,教师对学生板演进行讲评.

活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展。

活动的实际效果:通过练习进一步熟悉有理数的加法法则。通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种(五)课堂小结:

活动内容:师生共同总结。

1.两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值

2.有理数加法法则及其应用。

3.注意异号的情况。

活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。

活动的实际效果:学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标。

(六)布置作业:

1.课本习题2.41、2、3、4、5、6

2.拓展练习:

(1)(-0.9)+(-2.7);(2)3.8+(-8.4);(3)(-0.5)+3(4)3.29+1.78;(4)3.29+1.78;(5)7+(-3.04);(6)(-2.9)+(-0.31);(7)(-9.18)+6.18;

【微语】挥挥手,和过去说再见!

985大学 211大学 全国院校对比 专升本 美国留学 留求艺网

温馨提示:
本文【有理数加法教学设计(通用10篇)】由作者教培参考提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号 美国留学 留求艺