培训啦 考试资料 > 说课稿

三角形的中位线说课稿(精品4篇)

发布时间: 2024-11-13 08:03

三角形的中位线说课稿(1)

一、教材分析

本节课是苏科版八年级上册第三章第6节第1课时的内容。在此之前,学生已学习了中心对称图形及平行四边形的性质,在此基础上来研究三角形的中位线。此外本节内容在今后的几何推理、证明中将时有出现,有些问题我们用构造中位线的方法可以轻松解决。因此,学好本节课的内容至关重要。

二、学情分析

八年级的学生好奇心强,对数学的求知欲旺盛,学生已掌握了中心对称图形及性质,也具备一定的操作、归纳、推理和论证能力。基于以上分析,我制定了如下的学习目标:

1、知识与技能:理解并掌握三角形中位线的概念及性质,会利用性质定理解决有关问题。

2、过程与方法:在探索三角形中位线性质的过程,体会转化的思想方法,进一步发展学生操作、观察、归纳、推理能力,培养学生分析问题和解决问题的能力。

3、情感态度价值观:通过真实的、贴近生活的素材和适当的问题情境,激发学生学习数学的热情和兴趣。体会学数学的快乐,培养运用数学的思想。

三角形中位线定理是三角形的重要性质定理,是解决几何问题的重要依据。因此,我将本课的教学重点定为“三角形中位线定理及应用”

由于本节定理证明的关键是恰当地引辅助线,构造平行四边形,而学生对辅助线的引法、规律还不得要领。因此,我将本节课的教学难点确定为“三角形中位线定理的证明”

三、教法与学法分析教法:

依据本节课的内容及学生认知结构的特点,我选用了合作探究式的教学方法,在多媒体的辅助下,让学生在活动、探究中获取新知,开发学生

的创造性思维,达到教学目标。

学法:

学生经过自己亲身的实践活动,形成自己对结论的感知。并掌握探究问题的方法,真正地学会学习,达到“授之以鱼,不如授之以渔”的教育目的。

四、教学过程:

(一)、创设情境,引入新课.创设生活情景

A、B两棵树被一池塘隔开,如何测量A、B之间距离呢?

巧用多媒体展示出实物图片,吸引学生的注意,激发学习兴趣,提出问题,告诉学生,通过本节课对三角形中位线的学习,我们就能解决这个问题了,从而引出新课。

(二)、合作交流,探究新知:①给出三角形中位线的概念(板书):连结三角形两边中点的线段叫三角形的中位线。请学生自己在座位上做出三角形的中位线。

并提出疑问:什么是三角形的中线,它与三角形的中位线有什么不同?通过画图,让学生熟悉图形特征,加强对三角形中位线的感知,并通过与已学的三角形中线概念作比较,加强对三角形中位线概念的理解加深学生对三角形的中线和中位线认识,从而培养学生对比学习的能力。

让学生观察前面画出的三角形的中位线,并回答问题:一个三角形共有几条中位线?三角形中位线与三角形各边又有怎样的关系?

引导学生猜想,鼓励学生仔细观察,说出他们自己的猜想。使学生在学习过程中学会猜想。

紧接着,我安排了以下两个活动。

②活动(板书)

我将班级学生分为两种组,每组同座位之间合作,每组分别进行一下两个活动。

A活动一(测量)

1、任意画一个三角形并画出它的一条中位线。

2、量出中位线和第三边的长度。

3、量出所画图形中一组同位角的度数。DE4、你发现了什么?

B

CA活动二(裁剪拼接)

1、剪一个三角形,记作△ABC。DFE。

2、找到边AB和AC的中点DE连结DE。

3、沿DE把△ABC剪成两部分。

4、把分割开的两部分重新拼接。BH。

5、新拼接的四边形是什么特殊的四边形?

教师引导学生通过动手测量、拼剪、推理检验自己猜想的合理性。

经过以上的探究和讨论,学生得出三角形的中位线平行于第三边,并等于它的一半的结论。

紧接着我将继续提问:“这个结论是否具有普遍性,还得从理论上加以证明。”

为了突破难点,借助于我将借助于多媒体和几何画板直观展示,进行完整地证明展示,让学生有直观的认识几何图形,证明方法是将问题转化到平行四边形中去解决。这体现了数学中的转化归纳的重要思想。

思路:过点C作AB的平行线交DE的延长线于F,连结AF、DC,去证,四边形ADCF是平行四边形,从而得出AD//FC且AD=FC。

实验先行,证明完善后提出三角形中位线定理,让学生学会科学地研究问题和解决问题,以此培养学生严谨的逻辑思维,三角形的中位的性质定理(板书):三角形的中位线平行于第三边,并且等于它的一半。

(三)、课堂练习,巩固提高

回归到一开始的问题情境,让学生根据今天的所学,想出办法来解决之前的问题。以此让学生感受到数学来源于实际,并反过来作用于实际,解决实际问题。

针对本课重点,我会设置一组有层次的习题,强化学生对重点知识的熟练掌握。

我将利用多媒体,先出示一些较为简单的题目,让学生进行口算抢答。这样既可以调动学习气氛,又可以巩固所学知识。接着再给出以下的练习(板书)

①已知三角形三边分别为6、8、10,连结各边中点所成三角形的周长是多少?

②梯形ABCD中AD∥BC,对角线AC、BD相交于点O,A’、B’、C’、D’分别是AO、BO、CO、DO中点,证明:则四边形A’B’C’D’是梯形。

若梯形ABCD周长为10,求四边形A’B’C’D’的周长。学生在做完的同时学生引发思考:这两个三角形及梯形周长之间的关系。

(四)、课堂小结

让学生自己总结并谈谈收获,培养归纳能力,围绕教学目标,教师补充强调,通过小结,使学生进一步明确学习目标,使知识成为体系。

(五)、布置作业(板书)

利用多媒体,放出作业三道必做题,一道选做题。

作业分层次,让不同程度的学生都能在原有认知水平的基础上得到提高。

以上就是我说课的全部内容,谢谢。

三角形的中位线说课稿(2)

今天我说课的题目是“三角形的中位线”。本节课选自上海教育出版社出版的《九年制义务教育课本》八年级第二学期。这一节课是本册书第二十六章第六节的内容。下面我就从以下四个方面——教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。

一、教材分析

分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

1、“三角形的中位线”,是初中几何的一个非常重要的知识点,它具有计算和证明等多种灵活的运用;它是继四边形,尤其是前一阶段刚学的特殊四边形(平行四边形、矩形、菱形、正方形、等腰梯形等)之后的又一个非常重要的几何知识。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。逻辑思维能力的培养主要是在初二阶段完成的。“三角形的中位线”作为几何计算和推理论证的重要一环,是初中几何的一个基础环节,它直接关系到学生对几何计算、几何论证等内容的进一步学习。

2、就第二十六章而言, “三角形的中位线”也是本章的一个重点。因为在三角形中或多边形中,当证明的某一命题的题设中出现两条线段的中点时,总要想到是否应用三角形中位线定理来试一试。

从以上两点不难看出它的地位和作用都是很重要的。

接下来,介绍本节课的教学目标、重点和难点。

教学大纲是我们确定教学目标,重点和难点的依据。因此根据教学大纲的要求,确定了本节课的教学目标。(1)掌握三角形中位线的概念及性质定理,能进行有关的计算与证明。(2)通过分析连接各种四边形各边中点所得到的四边形,归纳其中的规律,提高学生分析归纳数学问题的能力。(3)渗透由特殊到一般的辩证唯物主义思想:培养学生严谨的思维品质。重点难点:分析归纳连接各种四边形各边中点所得到的四边形的规律。

二、教材处理

本节课是在前面学习了平行四边形的基础上进行的,学生已经比较牢固地掌握了平行四边形的性质和判定,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的观察和操作,让学生先得出三角形中位线的结论,再引到学生利用来证明三角形中位线定理。通过例题让学生自己探究连结各种四边形各边中点所得到的四边形的规律。达到培养学生分析归纳数学问题的能力的目的。这些我将在教学过程的设计中具体体现。而且在探究过程中让学生互相合作,使课堂在学生的参与下积极有序的进行。

三、教学方法和教学手段

在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

四、教学过程的设计

1、复习提问:平行四边形的判定,注重新旧知识的互补和融合。

2、新课引入:已知:△ABC的周长等于20cm,D、E、F分别是AB、AC、BC边上的中点。

求:△DEF的周长。

(学生进行猜测,动手测量,得出结论)

1)请叙述三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线。

2)证明猜测的结论,得到三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

3、讲解例题:已知:四边形ABCD中,E、F、G、H分别是AB、 BC、CD、DA的中点。

求证:四边形EFGH是平行四边形。

证明:{ 分析辅助线添法,板书证明过程(略)}

** 得出结论:连结任意四边形各边中点所得到的四边形一定是平行四边形。

4、探究连结各种四边形各边中点所得到的四边形的规律。

(发下印有各种四边形的练习纸,连结各边中点,以小组为单位进行讨论并探究其中的规律,师生共同归纳)

(在探究归纳过程中,对于由特殊四边形:如矩形、菱形、等腰梯形、正方形等,连结各边中点得到特殊的平行四边形,进行简单的口头证明)

5、小结:

1)这节课我们主要学习了三角形的中位线,知道了它的定义和定理。

2)运用三角形中位线定理,我们探究了连结任意四边形各边中点所得四边形的规律,即:

①连结任意四边形各边中点所得到的四边形一定是平行四边形;

②连结对角线相等的四边形各边中点所得到的四边形是菱形;

③连结对角线互相垂直的四边形各边中点所得到的四边形是矩形;

④连结对角线既相等又互相垂直的四边形各边中点所得到的四边形 是正方形。

6、巩固练习(附练习纸)

7、布置回家作业

以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

三角形的中位线说课稿(3)

一、教材分析

1、教材的地位和作用

本节课是苏课版数学八年级上册第三章第6节第1课时的内容。在此之前,学生已学习了旋转图形、中心对称与中心对称图形的性质,利用中心对称图形的性质,研究了平行四边形的性质,并在此基础上展开了对矩形、菱形、正方形的研究。这一节的内容也是本章的重要内容,主要是利用中心对对称变换,研究三角形中位线和梯形中位线的性质,并通过中心对称变换向学生展示一个重要的数学思想方法——转化。将三角形中位线性质的研究转化为平行四边形性质的研究、梯形中位线性质的研究转化为三角形中位线性质的研究。本节内容虽然安排在本章的最后一节,但是三角形、梯形的中位线的性质在今后的几何推理、证明中将时有出现,有些问题我们用构造中位线的方法可以轻松解决。

2、课时安排和说明

“3.6三角形、梯形的中位线”这一节安排两课时,第一课时,探索得到三角形中位线的概念和性质,并会利用三角形中位线的性质解决有关问题;第二课时,在三角形中位线的基础上,探索梯形中位线的性质,并用此性质解决有关问题。本次说课内容为第1课时。

3、教学重点和难点

教学重点:探索三角形中位线性质的过程,体会转化思想。

教学难点:利用中心对称性质研究得到三角形中位线的性质。

二、学情分析

认知分析:学生已掌握了如何构造中心对称图形以及中心对称的性质,这将成为本课学生研究和探索三角形中位线性质的基础知识。

能力分析:学生通过前三章内容的学习,已具备一定的操作、归纳、推理和论证能力,但在数学意识与应用能力方面尚需要进一步培养。

情感分析:多数学生对数学学习有一定的兴趣,能够积极参与动手操作与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生主动性不够强,尚需通过营造一定学习氛围,来加以带动。

三、教学目标

知识与技能目标:探索并掌握三角形中位线的概念和性质。

过程与方法目标:经历探索三角形中位线性质的过程,体会转化的思想方法,进一步发展学生操作、观察、归纳、推理能力;让学生接触并解决一些现实生活中的问题逐步培养学生的应用能力和创新意识。

情感与价值观目标:通过真实的、贴近学生生活的素材和适当的问题情境,激发学生学习数学的热情和兴趣;通过对三角形中位线的研究,体验数学活动充满探索性和创造性,在操作活动中,培养学生的合作精神。

四、教法、学法

教法:本课采用“情境——问题——探究——反思——提高”,使学生进一步体验到数学是一个充满着观察、实验、归纳、联想和猜测的探索过程。

学法:本节课采用小组合作、实验操作、观察发现,师生互动、学生互动的学习方式。

五、程序设计

课堂教学是学生数学知识的获得、技能技巧的形成、智力的发展以及思想品德的养成的主要我们途径,为了达到预期的教学目标,我对整个教学过程进行了系统的规划,遵循目标性、整体性、启发性、主体性等一系列原则,进行教学设计,设计了以下六个教学环节:

(一)激发情趣、问题导入

(二)指导观察、认识特点

(三)自主探索,探求新知

(四)合作交流、推理证明

(五)尝试运用,巩固性质

(六)小结反思,巩固提高

六、说课过程

(一)激发情趣、问题导入

(投影)先让学生看一个现实问题,使学生认识到生活中处处有数学:

如图,A、B两地被建筑物阻隔,怎样测出A、B间的距离?说说你的方法。让学生观察、思考,学生可能回答用全等的知识,也可能回答用直角三角形的性质(勾股定理)来测量。

(问题导入,并配以题目,让学生自然进入学习的氛围,为下面的教学打下良好的基础,体现数学来自生活的新课标理念。问题引疑,激发学生学习兴趣。)

活动探究:

活动 操作——观察——探究

给你一个任意的三角形(不要用特殊的三角形如直角三角形、等腰三角形等),能否只剪一刀,就能将剪开的图形拚成一个平行四边形呢?请大家按分好的小组一起动手操作一下,然后将结果告诉老师。

(分组动手操作激发学生学习的兴趣,增加学生的感性认识,同时培养了学生合作的良好习惯。体现学生“自主学习”的过程,并培养学生的合作意识。)

(将学生原来的三角形和拚好后的图形一起贴在黑板上)

(二)指导观察、认识特点

观察:大家观察图形的变化

师:哪一组的代表在黑板上画出转化前后的图形

(教学:指导学生在图形必要的地方标上字母,并将变化前后的字母都标在转化后的图上。)

师:同学们剪的、画的都非常准确,可谁能告诉大家你是如何找到剪痕DE的呢?

生:我是通过做高AF,将点A与点F重合的折叠的方法找到的

生:我是先通过用对折的方法分别找出AB与AC的中点,再沿着DE折叠找到的。

师:两种折法不同,那么哪一种的做法是正确的呢?为什么?

生:(学生讨论后归纳)两种做法都是正确的,因为两种做法的折痕是重合的。

(构造中心对称为下面利用中心对称的性质研究三角形中位线的性质做铺垫。)

师:通过操作我们可以看到线段DE实质上就是三角形两边中点的连线,我们给这样特殊的线段起个名称叫做三角形的中位线。

(板书:三角形的中位线)

三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。

(三)自主探索,探求新知

师:大家观察黑板上的拚图及所画的图,会发现DE与BC有什么关系?

(小组讨论)学生自由发言 生:DE是平行于BC 生:两个DE的长等于BC

师: DE从位置上看是平行于BC的,而数量上看等于BC的一半。即DE∥BC,DE= BC。这也就是三角形中位线的性质。

(板书:三角形中位线的性质:三角形的中位线平行于第三边,并且等于第三边的一半)

师:你能用符号言语将它表示出来吗?

生:能 因为 AD=DB,AE=CD 所以 DE∥BC,DE= BC

(通过直观的观察让学生得到三角形中位线的性质,培养学生对客观世界的直观认识,培养学生的猜测、归纳能力。)

(四)合作交流、推理证明

师:三角形有中位线的性质只是我们通过直接的观察得到的,它一定是正确的吗?让人总感觉到有点不敢相信,能不能让我们通过推理的方式把它的正确性加以验证呢?生:能。

师:好,我相信大家的能力。请大家根据黑板上的图形,写出已知的条件及所要说明的结论。就让我们勇敢的同学上来将过程展现给大家看一看,大家同时练习好不好?

学生板演,教师点评,强调注意点。

(用推理的方法对三角形的中位线的性质进行验证。培养学生严密的数学态度,也发展学生有条理地思考和表达能力体验成功的喜悦。)

(五)尝试运用,巩固性质

1.性质运用

师:下面我们通过习题尝试运用三角形的中位线性质。

出示:例1 如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,四边形EFGH是平行四边形吗?为什么?

(学生讨论后)回答:是

师:谁来告诉大家,你是如何思考这个问题的。

(鼓励学生回答:利用

①一组对边平行且相等;

②两组对边分别相等的四边形是平行四边形;

③两组对边分别相等的四边形是平行四边形)

师:变式1:如果这个条件不变,改变结论:如EG与FH的关系等。

变式2:四边形ABCD是平行四边形呢?

变式3:四边形ABCD是矩形呢?

变式4:四边形ABCD是菱形呢?

(体会图形的构造过程,增强学生的感性认识,进一步理解题意,通过变式练习,培养学生的发散思维能力及图形的动感,使学生体会到事物之间都是相互联系的)

例2.尝试解决本课开头的问题。

总结:可在地面上选一点C,连接CA、CB,分别取CA、CB的中点D、E,连接DE,量出DE的长,则根据三角形中位线的性质,可知AB=2DE。(前后照应,学以致用。)

(六)小结反思,巩固提高

1、你是如何发现三角形的中位线及其性质的。

2、让学生自己思考通过本节课的学习有什么体会?

(课堂小结不仅可以使学生从总体上把握所学的内容,得到相应的体验,在活动中做数学,还可以培养学生的语言表达能力,培养学生良好的个性与思维品质,对学生的小结以鼓励为主,让学生有学习数学而获得的成功的体验与喜悦。)

板书设计(略)

本节课我主要采取“创设问题情境,组织数学活动,引导自主、合作学习,观察发现得到概念,问题解决”的教学模式,培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发展数学和应用数学解决生活中问题的过程,发展学生的空间观念,品尝成功的喜悦,激发学生应用数学的热情,同时注重学生的动手能力、协作与交流能力、数学语言表达能力的锤炼与培养。由于八年级学生的理解能力与思维特征,也为使课堂生动、有趣、高效,将学生分成若干个学习小组,学生采用“多观察、多动脑、大胆猜、勤钻研”的研讨式学习方法。给学生提供更多的活动机会和空间,在动脑、动手、动口的过程中获得充分的体验和发展,从而培养学生各方面的能力。

总之,本节课教师的角色是引导者、合作者、组织者,注重让学生在活动中学好数学,通过数学活动与小组的交流,让学生有更多的展现自我的机会,并给予鼓励,另外侧重利用学生生活中的问题,让学生经历将实际问题数学化的过程,体会“生活中处处有数学,生活中时时用数学”。

三角形的中位线说课稿(4)

一、说教材

1、教材的地位及作用:教材首先引出中位线的概念,进而探索研究它的性质,最后利用性质定理进行有关的论证和计算,步步衔接,层层深入,形成知识的链条。本课内容可以为今后证明线段平行和线段倍份关系提供重要的方法和依据。可见,三角形中位线在整个知识体系中占有相当重要的作用。另外,本课是通过探究推理得到定理的,所以通过本课教学,对探究数学问题能力的培养及创新思维训练也有着十分重要的作用。

根据新课标要求,结合学生的实际情况,我制定了如下的学习目标:

知识与技能:理解并掌握三角形中位线的概念、性质,会利用性质解决有关问题。

过程与方法:经历探索三角形中位线性质的过程,感受三角形与四边形的联系,培养学生分析问题和解决问题的能力。

情感态度价值观:通过对问题的探索研究,培养学生大胆猜想、合理论证的科学精神。

我认为本课的教学重点是三角形中位线定理及其应用,这是因为:

1、《新课程标准》明确规定要求学生掌握三角形中位线定理,能运用它进行有关的论证;

2、三角形中位线定理所显示的特点既有线段的位置关系又有线段的数量关系,因此对实际问题可进行定性和定量的描述;

3、学习定理的目的在于应用,而三角形中位线定理的应用相当广泛,它是几何学最基本、最重要的定理之一。

教学难点是三角形中位线定理的推证,原因在于补充三角形中位线定理的证法中,还利用了数学中的化归思想,这正是学生的薄弱环节。

二、说教法

依据本书教学内容及学生知识建构的特点,尚需依赖于直观形象的学习方法,我选用了合作探究式教学法,通过设计活动、问题序列,引导学生动脑、动手、动口、主动探究,参与整个教学过程,体现学生的自主性和合作精神主动愉快地进行创造性学习。

同时,根据图形的特点,充分利用多媒体提高教学效率,增大教学容量,通过动态的演示,激发学生学习兴趣,启迪学生解题思路的蒙发。

三、说学法

“授人以鱼,不如授人以渔”.我体会到,必须在给学生传授知识的同时,教给他们好的学习方法,就是让他们“会学习”。通过本节课的学习使学生学会猜想法、测量法、模仿法、自主学习法等。

四、说教学过程:

(一)、创设问题情境,引入新课.

引例:(幻灯片)A、B两地被一建筑物隔开不能直接到达,要测量A、B两地的距离应如何测量?

今天这堂课我们就要来探究其中的学问。三角形中位线

借助多媒体演示引例,创设悬念——如何测算被建筑物隔开的A、B两地的距离吸引学生的注意,激发了学生的兴趣和求知欲。

(二)、引导学生,探究新知:

1、概念教学:

直接认识概念

老师结合图形演示所做线段区别是三角形的中线和中位线。

明确:三角形中位线定义是什么?一共几条?引导学生自己给三角形中位线下定义,从而培养学生归纳概括的能力。

观察区别:三角形的中位线与三角形的中线有什么区别?又有什么联系?加深学生对三角形的中线和中位线认识,从而培养学生对比学习的能力。

2、自学交流:

观察猜想:△ABC中,D为AB中点,E为AC中点,线段DE(△中位线)与BC有什么数量关系与位置关系?

引导学生猜想,鼓励学生仔细观察,说出他们自

己的猜想。使学生在学习过程中学会猜想。

做一做:

方法一(测量法)

1、任意画一个三角形并画出它的一条中位线;

2、量出中位线和第三边的长度;

3、你发现了什么?

教师给学生提供操作步骤,引导学生通过动手测量、推理检验自己猜想的合理性。教师参与学生探究解决问题的过程中,与学生交流,获取信息,了解学生实际,从而有针对性地引导学生进行证明。

学生说自己的证法(实物投影仪),最后由教师借助幻灯片演示完整的过程。

总结定理:(幻灯片)

三角形的中位的性质定理:三角形的中位线平行于第三边,并且等于它的一半。

让学生总结定理,(教师强调)一个题设两个结论,(一个是位置关系,一个是数量关系,根据需要选用相应的结论)它提供了一种证明直线平行和线段数量关系的新方法,应用定理的关键是找出(或构造出)符合定理的基本条件,加强学生对定理的理解,培养了学生归纳概括的能力。

3.定理应用:(幻灯片)为了进一步巩固定理,加深对定理用途的认识,我选择教科书上的例题,放手发动学生自主学习。对学生的疑惑教师进行点拨。通过此题学会运用定理进行推理运算,发挥例题的示范,提高学习的效率与学生自学能力。

4.当堂检测

为检测学生对本课目标达成情况,加强对定理的应用训练。我设计了一组有梯度的练习题其中探究1、2题是中位线定理的经典应用,巩固定理的同时又提高学生自主学习能力与语言表达能力。当堂检测题通过添加辅助线构造三角形中位线,对于学生来说有一定难度,但有了前面的经验,相信给学生一定的时间,能独立完成。教师只解决学生讨论探究中的疑难问题,最后达成共识,师生共同完成书写步骤。应用定理解决问题,增强应用意识与能力。同时解决开头的生活链接,呼应悬念。有机地把所学的知识技能、思维方法迁移到生活中的具体问题的解决之中,加强对定理的理解,突出重、难点。教学时教师启发学生怎样把现实问题转化为数学问题,使问题得以解决。师生共同完成书写步骤。给学生施展才智的机会。学生通过分组评论得出结论,使学生对所学知识豁然开朗,在轻松愉快的教学氛围中达到理想的教学效果,增强了数学来源于实践,又反作用于实践的意识。多媒体的应用,无疑使这节课更加形象直观,帮助理解,增加了课堂容量

5、归纳小结

让学生自己总结并谈收获,培养归纳能力,围绕教学目标,教师补充强调,通过小结,使学生进一步明确学习目标,使知识成为体系。

6、布置作业

教材68页2题 巩固运用定理解决问题。

7、板书:

课题:22.3三角形中位线定理

1.定义:连接三角形两边中点的 定理的证明:

线段叫三角形中位线。

2.定理:三角形中位线平行于第

三边,并且等于它的一半。

通过板书呈现教学重难点,进一步明确学习目标。

总之,在设计教学过程中,我始终注意发挥学生的主体作用,让学生通过自主探究、合作学习,培养学生良好的数学素养和学习习惯,让学生学会学习。

【微语】风和我都是自由的。

985大学 211大学 全国院校对比 专升本

温馨提示:
本文【三角形的中位线说课稿(精品4篇)】由作者教培参考提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号 留求艺网