教培参考
教育培训行业知识型媒体
发布时间: 2024年12月23日 22:25
教学内容:
《百分数与小数的互化》义务教育课程标准实验教科书,六年级,第5单元,第2节。
教学分析:
这部分内容是在学生已学习百分数的意义,明确了百分数和分数、小数的联系的基础上进行教学的。由于百分数的计算通常是化成分数、小数来进行,而求百分率,又要把计算的结果化成百分数,所以学好这部分内容就为后面学习百分数的计算和应用打下基础。
学情分析:
由于百分数、小数、分数这三者之间有着密切的联系,所以学生对百分数与小数之间的互化不难掌握,学生可以利用自己原有的知识思考怎样互化,再归纳出互化的方法。
教学目的:
1、学会百分数与小数互化的方法;能正确地较熟练地进行百分数与小数的互化。
2、通过自学、讨论与交流等学习活动,理解百分数与小数互化的方法。
3、积极参与百分数与小数互化的学习活动,体验互化方法的多样性,并获得成功体验。
教学理念:
1、教学过程中充分发挥学生的主体作用,使学生主动获取知识。
2、找准知识的“生长点”,利用知识的迁移,自主探索新知。
教学重、难点:
理解并掌握百分数与小数互化的方法。
教学过程:
一、复习引入
1、举例说明百分数的意义。
2、把下面的分数化成小数,小数化成分数。
0.45= 1.2= 0.637= 3/25= 7/8= 1/10=
二、导入新课
根据分数与小数化成互化关系,请同学们猜测一下,百分数与小数也能互化吗?是的,百分数与小数也能互化。在生产生活中,为了简便,经常需要把小数或分数化成百分数,或者把百分数化成小数或分数。这节课我们就探究百分数和小数的互化方法,并能正确熟练的进行互化。(板书课题:百分数和小数的互化)
三、探究新知
(一)教学小数化百分数
1、出示例1:把0.24、1.4、0.123化成百分数。
2、小组讨论:怎样把小数化成百分数呢?
引导学生的出:把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。
3、0.24怎样化成百分数?
根据学生回答,板书:0.24=24/100=24%
4、学生在草稿本上尝试把 1.4、0.123化成百分数,指名板演。
板书: 1.4=14/10=140/100=140%
0.123=123/1000=12.3/100=12.3%
5、把中间转化的过程框起来,师:方框中的部分是表示把小数化成分母是100的分数的过程,请大家观察一下,如果不看这个过程,小数可以怎样直接化成百分数?
6、引导学生归纳出小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
7、完成第80页“做一做”第(1)题。
(二)教学百分数化小数
1、师:你们已经总结出了小数化成百分数的方法,如果反过来,要把百分数化成小数,应该怎么办呢?(学生很可能回答把百分数化成小数,要去掉百分号,再把小数点向左移动两位。)
2、你们说的方法对不对呢?我们来验证一下。
出示例2:把百分数27%、135%化成分数。
3、看书第80页,独立完成例2。
4、全班交流,汇报、板书:
27%=27/100=0.27 135%=135/100=1.35
5、总结方法,把板书补充完整。
6、学生在草稿本上练习把0.6%化成小数。(反馈时教师强调小数点向左移动两位,位数不够要补0占位。)
7、完成第80页“做一做”第(2)题。
四、巩固练习
1、判断正误,并把错题改正过来。
0.4=4% ( ) 0.15%=0.015( ) 3%=0.3 ( )1=100% ( )
2、完成书第83页第2题。
3、课堂练习:书第83页第1题。
板书设计:
百分数与小数的互化
0.24=24/100=24%27%=27/100=0.27
1.4=14/10=140/100=140%
0.123=123/1000=12.3/100=12.3%135%=135/100=1.35
小数点向右移动两位,同时添上% 去掉%,小数点向左移动两位
教学内容: 新课标实验教科书六年级上册第80页的例1、例2,完成做一做和练习十九的1、2题。
教学目标:
1、正确理解百分数与小数互化的作用;
2、正确掌握百分数与小数互化的方法,并总结百分数与小数互化的规律。
3、通过观察比较,培养找规律发展抽象概括能力。
教学重点: 百分数与小数互化的方法
教学难点: 归纳百分数与小数互化的方法。
教学过程:
一、复习。
1.百分数的意义是什么?
2.把下面的小数化成分数,并说一说是怎样化的?
0.45 1.2 0.367
3.把下面的分数化成小数,说一说是怎样化的?
4.写出下面各百分数。
百分之十六 百分之七十二点五
百分之一百八十 百分之五百
5.把下面各数扩大100倍是多少?小数点是怎样移动的?如果把它们缩小100倍是多少?小数点是怎样移动的?
2.5 5 0.48 1.25 10.3
二、新授。
1.教学例1。
(1)出示例1:把0.24、1.4、0.123化成百分数。
(2)引导学生思考:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。
0.24= =24%
1.4= = = =140%
0.123= = =12.3%
(3)请大家观察一个,如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?(引导学生归纳出小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。)
(4)说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。
(5)完成第80页“做一做”第(1)题。
2.教学例2
(1)出示例2:把27%、135%化成小数。
(2)引导学生思考:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。
(3)启发学生口述每题的转化过程,板书:
27%= =27÷100=0.27
135%= =135÷100=1.35
(4)引导学生观察、归纳,百分数怎样很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)
(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。
(6)完成第80页“做一做”的第(2)题。
3.课堂小结:
引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
三、练习巩固
1、做一做:把下面的分数化成百分数,百分数化成小数。
2.1= 0.313= 18.5%= 1.07=
26.34%= 59.8%= 1.41= 0.69=
2、连一连:找出相等的两个数:
11% 0.55 27% 0.02 163%
1.63 2% 0.11 55% 0.027
3、判一判:如有错的,请在括号里填上正确的答案。
360%=3.6( ) 55%=55( )
8=80% ( ) 0.3=0.003%( )
0.008=80%( ) 2.5=2500%( )
4、闯一闯:从大到小排列下列各数:
0.87 87.6%
( )>( )>( )
四、课堂总结:通过这节课的学习,你有什么收获?
作者:江苏省扬州市邗江区实验小学 秦仕祥 北京新东方扬州外国语学校 黄云
教学内容:九年义务教六年制小学数学第十册第108-109页例3。
教学目标 :
1、使学生理解并掌握分数化成小数的方法,能应用分数的基本性质、分数与除法
的关系把分数化成小数,并能灵活地选择适当的方法把分数化成小数。
2、使学生理解并掌握能化成有限小数的分数的特点,能判断一个分数能不能化成
有限小数。
3、通过教学培养学生观察、比较、归纳、概括等能力,同时培养学生的创新意识和
创造能力。
教学重点:
理解并掌握分数化小数的方法,并能根据分数的特点选择合理、简便的方法把分数化小
None
教学难点 :分数能不能化成有限小数的特征。
教学理念:
分数化成小数的基础知识有两个:一是分数的基本性质,二是分数与除法之间的关系。教学时先通过复习帮助学生回忆学过的旧知,然后逐步把学生引入到知识的最近发展区,制造认知上的冲突,使学生处于积极的思维状态,并在知识的分化处进行适当的启发、引导,让学生在讨论、交流的研究中自己找到解决问题的办法,实现自主学习。
教学设计:
教学步骤
教 师 的 活 动 过 程
学生的活动过程
设计意图
一、复习铺垫
1、把25、8、12、33分解质因数。
(板书:25=5×5;8=2×2×2;12=2×2×3;33=3×11)
师:你能把上面的这些数乘以几个质数,使它们的积是10、100、1000、……吗?
师:哪些数可以变成是10、100、1000、……?哪些不可以变成10、100、1000、……?
2、归纳概括
师:你有没有发现其中的规律吗?这个规律是什么?
师:这是什么道理呢?
师:下面的数乘以一个或几个质因数能变成10、100、1000、……吗?
6、15、20、16、50、8、125、48、60
3、你会把下列分数改写成小数吗?
、、、
师:分母是10、100、1000、……的分数化成小数的方法是什么?
1、学生口答。
2、学生研究回答:
生:一个数只有质因数2、5,就能乘以几个质因数变成10、100、1000、……;含有2和5以外的质因数的数不可以。
3、学生口答。
这个复习的目的是让学生知道什么样的数可以乘以一个数变成10、100、100、……,为下面学习一个分数能不能化成有限小数作好知识上的准备。
二、研究能转化成十进制分数化成小数的方法。
1、出示:把化成小数。
师:这道题与我们前面学习的.有什么不同?
师:怎么把它化成小数呢?你们能自己想办法解决吗?
2、研究化化小数的方法
【如果学生有困难,教师可以加以引导、启发、点拨】
师:你们是怎么解决这个问题的?
师:把变成应用了什么知识?
板书:==0.25
师:从这里可以看出:分母不是10、100、1000、……的分数化小数的方法是什么?
3、练习把、、 化成小数。
1、学生观察思考:
生:分母不是10、100、1000、……了。
2、学生分学习小组讨论、讨论。
生:我是把它变成,然后再化成小数0.25。
生:应用了分数的基本性质,分子与分母都乘以25。
生:先把它变成分母是10、100、1000、……的分数,然后再化成小数。
3、学生练习。
把1/4化成小数与原来学习分数的不同了,于是学生就产生了认知上的矛盾和冲突,自然而然地激发起学生解决问题的欲望,此时让学生分组讨论,学生在研究中自己找到了解决问题的办法:应用分数的基本性质把它转化成25/100,然后再化成小数0.25,从而掌握了分母不是10、100、1000、……的分数化成小数的方法。
三、研究不能转化成十进制分数化成小数的方法。
1、出示把 化成小数。
师:可以用刚才的方法把化成小数吗?试试看!
师:为什么不能呢?
生:因为它的分母不好变成10、100、1000……。
师:用前面的方法不行又该怎么办呢?
2、学生研究化成小数的方法
【教师给予学生适当的启发和引导】
师:谁来说一说你是用什么方法化成小数的?
师:你是怎么想到用分子除以分母的方法化成小数的?
师:请你算一算看等于多少?
板书:=5÷6≈0.833
师:前面的分数可以用分子除以分母的方法化成小数吗?算一算,看结果是否一样?
3、把、、2化成小数。
师:通过前面的学习你知道分数化成小数的方法有几种?哪两种?
师:哪种方法是通用的方法?在分数化小数时应如何选择使用这两种方法?
1、学生思考回答:
生:不能用前面的方法把它化成小数。
生:因为不好转化转化成分母是10、100、1000、……的分数了。
2、学生进行讨论、研究,然后汇报:
3、学生回答:
生:我是用分子除以分母的方法。
生:学生计算的出得数。
4、学生计算看是否得数一样。
5、学生练习。
6、学生回答:
生:能转化成分母是10、100、1000、的就用前一种方法,否则就用后一种方法。
分母不能转化成10、100、1000……的分数化成小数,是知识的一个分化点,也是学生学习分数化小数的难点,应用前面的方法都不能解决问题,此时安排学生进行讨论、研究,教师在关键处给予学生适当启发、引导,帮助学生在自己的知识系统中找到解决问题的关键性知识——分数与除法的关系,根据这个关系用分子除以分母就可以把分数化成小数,从而找到了分数化成小数的另一种方法。
四、研究能否化成有限小数的规律。
1、观察比较
师:通过前面的分数化小数的练习你有没有发现什么问题?
师:你们知道这是为什么吗?你们想知道其中的道理吗?
师:请同学们看一看这些分数,找一找哪些分数可以化成有限小数?哪些分数不可以化成有限小数?
师:
【微语】简单的事重复做,你就是专家;重复的事用心做,你就是赢家。