教培参考
教育培训行业知识型媒体
发布时间: 2024年12月23日 23:17
一、教学目标:
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程()中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式
的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学.
五、教学流程:
(一)、复习:
教学环节
教师活动
学生活动
设计意图
导入新课
1.给出方程:(x+4)/3=(3x-1)/2,抽学生演算。(注意步骤)
2.学生回忆不等式的性质,并说出解不等式的关键在哪里。
3.让学生举一些不等式的例子。在学生归纳出一元一次不等式的概念后,据情况点评。
4.新课导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。这节课我们来共同探讨解一元一次不等式的方法。
5.学生练习,并说出解一元一次方程的步骤。
6.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x≤a或x≥a的形式。(出示课件第2页)
7.举出不等式的例子,从中找出一元一次不等式的例子,归纳出一元一次不等式的概念。
8.明确本课目标,进入对新课的学习。
9.复习解一元一次方程的解法和步骤。
10.让学生回顾性质,以加强对性质的理解、掌握。
11.运用类比思维
12.自然过度,出示课件第3、4张
(二)、新授:
教学环节
教师活动
学生活动
设计意图
探究一元一次等式的解法
1、学生观察课本第61页例3,教师说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。提醒学生注意步骤。
2.分析学生的解答,提醒学生在解不等式中常见的错误:不等式两边同乘(除)同一个负数不等号方向要改变。
3.激励学生完成对(2)解答,并找学生上讲台演示。
4.强调在数轴上表示解集时的关键(出示课件第8页)
5.出示练习(出示课件第9页)
6.鼓励学生讨论课本第61页的例4。提示学生:首先将简单的文字表达转化成数学语言。(出示课件第10页)
7.指导学生归纳步骤。
8.补充适当的练习,以巩固学生所学。(出示课件第12页)
9.类比解一元一次方程,仔细观察,理解用不等式的性质(3)解不等式的原理,并掌握用数轴表示不等式的解的方法。
10.学生类比解一元一次方程的步骤
与解一元一次不等式的一般步骤,同时完成练习。(出示课件第6页)
11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教师提示,组内讨论后,检查自己的解答过程,弥补不足,进一步体会解一元一次不等式的方法。
12.理解、体会在数轴上表示解集的方法和关键。
13.学生组内讨论完成。
14.认真完成对例题的解答,在教师的提示下找到不等量关系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。
15.组内讨论并归纳后,看教师所出示的课件。(出示课件第11页)
16.认真完成练习。
17.电脑逐步演示,让学生从演示过程中理解不等式的解法。(出示课件第5张)
18.巩固对一般解法的理解、掌握。
19.通过类比归纳,提高学生的自学能力。(出示课件第7页)以订正学生解答。
20.让学生明白不等式的解集是一个范围,而方程的解是一个值。
21.培养学生的扩展能力。
22.类比一元一次方程的解法以加深对一元一次不等式解法的理解。
23.通过动手、动脑使所学知识得到巩固。
24.巩固所学。
(三)、小结与巩固:
教学环节
教师活动
学生活动
设计意图
小结与巩固
1.引导学生对本课知识进行归纳。
2.学生完成后(出示课件第13、14页)。
3.练习与巩固。
1.学生组内讨论小结,组长帮助组员对知识巩固、提升。
2.学生加强理解。
3.完成练习:书63页第4题,第5(2、4)题。
1.培养学生总结、归纳的能力。
2.点拨学生对知识的理解与掌握。
3.巩固本课所学。
一元一次不等式组数学教学设计
第一章 一元一次不等式组
1.1 一元一次不等式组
第1教案
教学目标
1. 能结合实例,了解一元一次不等式组的相关概念。
2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的转化思想方法。
3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点
1..不等式组的.解集的概念。
2.根据实际问题列不等式组。
教学方法
探索方法,合作交流。
教学过程
一、 引入课题:
1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2. 由许多问题受到多种条件的限制引入本章。
二、 探索新知:
自主探索、解决第2页动脑筋中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、 抽象:
教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)
实际问题与一元一次不等式教学设计
教学目标:
1。会解一元一次不等式。
2。会用不等式来表示实际问题中的不等关系。
教学过程:
新课:
例 甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。顾客怎样选择商店购物能获得更大优惠?
这个问题较复杂,从何处入后考虑它呢?
甲商店优惠方案的`起点为购物款达___元后;
乙商店优惠方案的起点为购物款过___元后。
我们是否应分情况考虑?可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?
(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
练习:
1。某校校长暑假将带领该校市级优秀学生乘旅行社的车去A市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”。乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元。
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙。分别计算两家旅行社的收费(建立表达式);
(2)当学生数是多少时,两家旅行社的收费一样?
(3)就学生数x讨论哪家旅行社更优惠。
2。某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:
(1)买一只茶壶送一只茶杯;
(2)按总价的92%付款。现有一顾客需购买4只茶壶,茶杯若干只(不少于4只)。
请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?
3。某人的移动电话(手机)可选择两种收费办法中的一种,甲种收费办法是,先交月租费50元,每通一次电话再收费0。40元;乙种收费办法是,不交月租费,每通一次电话收费0。60元。问每月通话次数在什么范围内选择甲种收费办法合适?在什么范围内时选择乙种收费办法合适?
补充练习:
1。有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1。5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费。问这批货在月初还是月末售出好。
2。某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0。5元,超计划用水超出部分每吨收费0。8元。如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0。28元,已知每抽一吨水需成本0。07元。问该单位是用自来水公司的水合算,还是自建水泵房抽水合算。
一元一次不等式教学设计
●○教学目标
知识与技能
(1)运用问题的形式帮助学生整理全章的内容,建立知识体系。
(2)在独立思考的基础上,鼓励学生开展小组和全班的交流,使学生通过交流和反思加强对所学知识的理解和掌握,并逐步建立知识体系。
教学思考
通过问题情境的设立,使学生再现已学知识,锻炼抽象、概括的能力。解决问题
通过具体问题来体会知识间的联系和学习本章所采用的主要思想方法。
情感态度与价值观
通过独立思考获取学习的成功体验,通过小组交流培养合作交流意识,通过大胆发表自己的观点,增强自信心。
●○重点和难点
重点:对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
难点:建立起相关的知识体系。
●○课前准备
多媒体及课件
●○教学设计
教师活动学生活动
交代本节课的主要任务.
多媒体显示本章的知识框架图
以问题的形式引导学生思考本章内容
结合本章的知识框架图,统观全章的知识内容,积极思考并回答问题
问题1
不等式有哪些基本性质?它与等式的性质有什么相同和不同之处?
小组交流有关不等式和等式基本性质的知识点.
问题2
解一元一次不等式和解一元一次方程有什么异同?引导学生回忆解一元一次方程的步骤.比较两者之间的不同学生举例回答.
回答解一元一次方程的步骤
比较两者之间的差异
问题3
举例说明在数轴上如何表示一元一不等式(组)的解集分组竞赛.看哪一组出的题型好,全班一起解答.
问题4
说一说运用不等式解决实际问题的基本过程
回答教师提问
问题5
举例说明不等式、函数、方程的联系.引导学生回忆函数的有关内容.举例说明三者之间的关系.小组讨论,合作回答.函数性质、图象
小组交流、讨论不等式和函数、函数和方程等之间的关系,分别举例说明.
课堂小结理解不等式的重要作用
结合本章知识框架图,让学生谈本节课的收获
布置作业开动脑筋,勇于表达自己的'想法.
回顾与思考2
●○教学目标
知识与技能
(1)在运用所学知识解决具体问题的同时,加深对全章知识体系理解。
(2)发展学生抽象能力、推理能力和有条理表达自己想法的能力.
教学思考:
体会数学的应用价值,并学会在解决问题过程中与他人合作.解决问题。在独立思考的基础上,积极参与问题的讨论,从交流中学习,并敢于发表自己的观点和主张,同时尊重与理解别人的观点。
情感态度与价值观:
进一步尝试学习数学的成功体验,认识到不等式是解决实际问题的重要工具,逐渐形成对数学活动积极参与的意识。
●○重点和难点
重点:
对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一次不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
难点:建立起相关的知识体系。
●○课前准备多媒体及课件
●○教学设计
教师活动学生活动
引导学生写出本章的知识框架图 不等式─→不等式基本性质
↓ ↓
↓ ↓
实际应用←──────学生回答问题
安排一组练习让学生充分充分讨论解决.
1.解下列不等式,并把解集表示在数轴上
(1)2(-3+X)>3(X+2)(2)
(3)(4)
(5)求不等式5(X-2)≤28+2X的正整数解
2.已知函数Y=2X-4
(1)当X取何值时,Y>0(2)当X取何值时,Y=0(3)当X取何值时,Y<0
3.某工人制造机器零件,如果每天比预定多做一件,那么8天所做零件超过100件;如果每天比预定少做一件,那么8天所做零件不到90件,这个工人预定每天做几个零件?
更多初二数学教案,请点击
《一元一次不等式组》教学设计模板
【知识与技能】
1、了解一元一次不等式组的概念。
2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。
3、会解一元一次不等式组。
【过程与方法】
通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则。
【情感态度】
运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。
【教学重点】
一元一次不等式组的解法。
【教学难点】
确定一元一次不等式组的解集。
一、情境导入,初步认识
问题1 现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?
解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②
合起来,组成一个__________。
由①解得_____________。
由②解得_____________。
在数轴上表示就是________________。
容易看出:x的取值范围是____________________。
这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。
问题2 由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的解法。
【教学说明】全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。
二、思考探究,获取新知
思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?
【归纳结论】
1、定义:
(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。
(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的`不等式的解集。
(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。
2、一元一次不等式组的解法:
(1)求出每个一元一次不等式的解集。
(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。
一元一次不等式与一次函数教学设计
在教学工作者开展教学活动前,通常需要用到教学设计来辅助教学,借助教学设计可以提高教学效率和教学质量。那么你有了解过教学设计吗?以下是小编为大家收集的一元一次不等式与一次函数教学设计,希望能够帮助到大家。
教学目标:
(知识与技能,过程与方法,情感态度价值观)
(一)教学知识点
1.一元一次不等式与一次函数的关系.
2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.
(二)能力训练要求
1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.
2.训练大家能利用数学知识去解决实际问题的能力.
(三)情感与价值观要求
体验数、图形是有效地描述现实世界的'重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
教学重点
了解一元一次不等式与一次函数之间的关系.
教学难点
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
教学过程
创设情境,导入课题,展示教学目标
1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗?
2.展示学习目标:
(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣
学生自主研学
指出探究方向,巡回指导学生,答疑解惑
探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:
(1) x取何值时,2x-5=0?
(2) x取哪些值时, 2x-5>0?
(3) x取哪些值时, 2x-5<0?
(4) x取哪些值时, 2x-5>3?
问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y<1 ?
你是怎样求解的?与同伴交流
让每个学生都投入到探究中来养成自主学习习惯
小组合作互学
巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。
探究二:一元一次不等式与一次函数关系的简单应用。
问题3.兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20 m?谁先跑过100 m?
你是怎样求解的?与同伴交流。
问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
让学生体会数形结合的魅力所在。理解函数和不等式的联系。
精讲点拨
移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话1分钟付话费0.4元;神州行不交月基础费,每通话1分钟付话费0.6元。若设一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元,那么 (1)写出y1、y2与x之间的函数关系式; (2)在同一直角坐标系中画出两函数的图象;(3)求出或寻求出一个月内通话多少分钟,两种通讯方式费用相同; (4)若某人预计一个月内使用话费200元,应选择哪种通讯方式较合算?
在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。
提高学生应用数学知识解决实际问题的能力
达标检测
展示检测内容
积极完成导学案上的检测内容,相互点评。
反馈学生学习效果
知识与收获
引导学生归纳探究内容
学生回顾总结学习收获,交流学习心得。
学会归纳与总结
布置作业
教材P51.习题2.6知识技能1;问题解决2,3.
板书设计
§2.5 一元一次不等式与一次函数(一)
一、学习与探究:
1.一元一次不等式与一次函数之间的关系;
2.做一做(根据函数图象求不等式);
3.试一试(当x取何值时,y>0);
4.议一议
二、精讲点拨:
三、知识与收获:
四、课后作业:
【微语】每一次跌倒都是一次学习的机会,让失败成为成功的基石。