鸡兔同笼问题也称“置换问题”,即已知“鸡兔"的总头数和总腿数,求鸡和兔各有多少只的一类应用题.鸡兔同笼是中国古代的数学名题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?其实是指已知鸡兔总只数和总腿数,求解鸡兔各自数量的题目及衍生题.
常见题型有:
已知鸡兔只数和腿数的数量关系,求每种的数量;
解决此类问题,可以使用画图法.例1:鸡兔同笼,头共10,足共28,鸡兔各几只?1、画10个圆表示10个头:
2、给每个头下添上2只脚:
3、发现总脚数比题目中的少,说明有兔子,则再依次添上兔腿,直到脚的数量一致:
由图可知:兔子有4只,鸡有6只.
遇到不是鸡和兔子的鸡兔同笼问题,需要结合实际情况画出不同的腿数.