教培参考
教育培训行业知识型媒体
发布时间: 2024年11月23日 21:27
新课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。《一个数除以小数》的教学内容,正体现了这一点。在教学中,我有以下反思:
一、把握知识内在联系,找准新知识的最佳生长点。
除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据900÷150=6直接写出90÷15、9÷1.5、9000÷1500的商。这是学习层面的一个飞跃,但却是有根据、有基础的飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。只要紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破
二、抓住本质,化繁为简,创造性地处理教材。
计算除数是小数的除法,要根据商不变性质先转化为除数是整数的小数除法来计算,再反推出原式的商。计算除数是小数的除法,最根本的是要先按照除数是整数的除法算出商,没有必要计算时在小数点的问题上过多纠缠,增加学生的学习难度。教学中一是让学生在计算前多说一说除数和被除数要同时扩大到原数的多少倍,小数点同时向右移动几位。二是多让学生进行一些简单的除数是小数的除法的口算练习。使学生习惯于把除数是小数的除法转化成除数是整数的除法来计算。
三、在练习中错误较多,将学生的错误案例作为新教学资源。
学生在练习中产生的错题让学生找错改正,效果大于让学生做书上改错题。让同学们判断,分析,订正即对新知的巩固练习,又起到学生间互相帮助效果,学生印象更深。通过学生自己学的过程中一步一步分析,自己得出了除数是小数除法的计算方法。通过后面练习发现效果很好。
1、导学案的编制怎样才能更好地引领学生去学习
在一稿中设计了“思路引导式导学案”,把例1中的三种解决问题的方法都给出了解题思路,实践证明把知识分解的过细,把孩子的思路框住了,反而束缚和限制了学生的思维。结合试讲中存在的'问题,采纳网友们的意见和建议,二稿设计中对导学案进行了大幅度的修改,设计了“问题引领式导学案”,即:以“问题”为线索,让学生带着问题去读书,去思考。众多网友在给予肯定的基础上提出了很多中肯的意见和建议,如:学习要求、知识链接、学习方法部分文字多又抽象,导学案发给学生,学生都不会关注这部分内容的,那不是给学生看的,感觉是给老师或听课教师看的;导学案的内容不能过多,只要能达到启发学生自学思考、发现问题、提出问题、解决问题即可;导学案的内容应是要求学生课前应做些什么,而不是课堂上学生怎么做,练习什么……针对网友的建议,我们在此基础上进行了细致的研究,进一步深入的研读教材,根据学生的实际情况编写导学案。“知识链接”部分以课前旧知检测的形式呈现,针对引领学生的课前预习设计问题:利用例1的问题情境,设计了四个有梯度、具体化、针对性强的问题,引领学生通过对问题的思考和解答,独立探索小数除以整数(商大于1)的计算方法,课堂实践证明,导学案的编制必须建立在读懂教材、读懂学生的基础之上,把握知识问题化、问题层次化、问题具体化、问题针对化的原则,才能使其真正成为学生自主探索的“方向盘”、“指南针”和“路线图”。
2。怎样让学生更好地去积累数学学习经验
“把课堂还给学生”是我们一直的追求,可是在实际的教学中,学生却往往“主”不起来,原因何在?值得我们去深思。一稿设计采用了“复习旧知,重温算理——自主合作,探究新知——课堂检测、巩固提升”的教学思路。课堂上学生分小组从不同侧重点展示了预习的收获,当学生展示汇报出现心理明白说不清楚的现象时,教师耐心地引导,不时地鼓励,当学生展示不到位时,当学生的错误未被指出时,当学生的质疑不能找出疑难抓住关键时,教师适时地提示、点拔、不断地追问,使学生在整个展示过程中明确了算理,掌握了算法,达成了既定的知识技能目标,但是一节课下来总觉得缺点什么:课堂活力不够,学生被动的经历着数学的学习过程,难以在此过程中主动积累数学学习的经验。针对以上问题,我们进行了认真的反思,课堂上哪些地方需要放手让学生独立学习,哪些地方需要小组中交流完成,哪些地方需要展示汇报,哪些地方需要教师点拨都是要针对学习内容和学生的学习情况而定,所以在预设时教材内容和学生学习情况一定要分析准确,把握好课堂的脉搏!重新梳理两次教学实践的成功之处和不足,我们确立了“课前预习、独立探索——小组交流、共享收获——展示汇报、明确算法——深化点拔、渗透思想——课堂检测、巩固提升”的教学思路。使每个学生成为数学学习的主人,充分经历探索小数除以整数计算方法的过程,让每个学生在合作学习中不但能理解和掌握小数除以整数的算理和算法,并且获得通过迁移旧知、类推探究,独立思考、合作交流等学习新知的基本的数学活动经验。同样由课堂实践得以证明:只有真正读懂课堂,以学定教,顺学而导,“学生是数学学习的主人”的理念才能真正得以实现。
本节课的学习自认为有一下几点做得比较好:
第一,学习时我重视知识间的联系,引导学生将新知识转化成旧知识(将一个数除以小数转化成小数除以整数)进行学习,注重“转化”的数学思想方法。
第二,课堂上注意给学生充分独立思考的时间和机会。比如,列出算式7.6÷0.85后,问学生“这个算式和我们以前学的除法算式有什么不一样?你会算吗?自己先试试。”
尊重学生原有的知识结构,让学生有一个独立思考的时间,通过思考出现认知冲突,从而激起学生的学习兴趣。
当然也有许多不足之处,首先,我对一些细节处理得不够明确,比如:给0.544÷0.16列竖式时,当除数和被除数扩大到它的100倍时,原来的0和小数点没用了就应该划去,课堂上的板书这一点做到了但没有强调,结果一部分学生在练习时没有划掉0.
一个数除以小数是在小数除以整数的基础上教学的,小数除以整数这一部分学生掌握好了,一个数除以小数的教学就容易很多。学生在这个部分学习的重点是理解把除数转化成整数是根据商不变的性质,只有学生理解这个性质,学生在把除数变成整数时才会有意识的把被除数扩大相同的倍数。另外在学习竖式计算时要让学生学会正确的书写格式。在上过这一课时时,我班主要出现以下问题:
1.部分学生不理解为什么要把除数变成整数,导致在计算中生硬地模仿例题,例题除数是一位小数,扩大十倍变成整数,在练习中学生遇到除数是两位小数的也是扩大十倍,然后计算。
2.有的学生对商不变性质理解不够,错误地认为遇到除数是小数的除法只要把除数变成整数就可以了,不注意把被除数扩大相同的`倍数。
3.还有的学生知道被除数和除数扩大相同的倍数,但在计算时认为小数点对齐,就是和原来的小数点对齐,不知道和扩大后的小数点对齐。
4.在要求学生用乘法验算时,学生搞不明白到底被除数和除数是扩大后的还是扩大前的,在验算中用商乘扩大后的除数。
新课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。《一个数除以小数》的教学内容,正体现了这一点。在教学中,我有以下体会:
一、把握知识内在联系,找准新知识的最佳生长点。
除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据900÷150=6直接写出90÷15、9÷1.5、9000÷1500的商。这是学习层面的一个飞跃,但却是有根据、有基础的飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。只要紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破
二、抓住本质,化繁为简,创造性地处理教材。
计算除数是小数的除法,要根据商不变性质先转化为除数是整数的小数除法来计算,再反推出原式的商。计算除数是小数的除法,最根本的是要先按照除数是整数的除法算出商,没有必要计算时在小数点的问题上过多纠缠,增加学生的学习难度。教学中一是让学生在计算前多说一说除数和被除数要同时扩大到原数的多少倍,小数点同时向右移动几位。二是多让学生进行一些简单的除数是小数的除法的口算练习。使学生习惯于把除数是小数的除法转化成除数是整数的除法来计算。
三、在练习中错误较多,将学生的错误案例作为新教学资源。
学生在练习中产生的错题让学生找错改正,效果大于让学生做书上改错题。让同学们判断,分析,订正即对新知的巩固练习,又起到学生间互相帮助效果,学生印象更深。通过学生自己学的过程中一步一步分析,自己得出了除数是小数除法的计算方法。通过后面练习发现效果很好。
一个数除以小数是人教版五年级上册第三单元的内容。是在学生学习过除数是整数的除法后进行的。除法的学习由口算过渡到笔算,在三年级学生已经接触到了,不过所认识的都是除数是一位数的除法,学生基本上明白了要怎样去操作,但是到了五年级学生学习小数除数时,他们往往都存在着不同程度的疑惑,主要是小数点的位置把握不准,下面是我对这节课的反思:
由于我还处于关注教材的阶段,并且有时教材也不能把握得十分得当。所以这节课中有些地方讲的不够透彻。在作业反馈中,我发现学生计算错误较多,主要表现在以下几个方面:
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,数位对不齐。这也是部分学生错误的原因之一。
三、商的小数点与被除数原来的小数点对齐。
四、算时用用商乘以移动小数点后的除数。
五、除到哪位商那位,不够时忘记在商的位置上写0,再拉下一个数。还有部分学生用余数再除一次。
现在反思其中的问题,觉得教学中在商的小数点的处理上没有具体的细化分析和引导,学生的理解也没有真正到位。这样,看似“简单”的问题却出现了纷繁的错误也就再所难免了。因此,只有站在学生学习的角度去思考设计教学,不能以为一些问题能很简单的生成。教学从学生的新知生长点上去展开重点引导,在学生的迷茫处给与及时地指点,这样或许效果会好许多。
教学完小数除法后,我发现学生原有的书写习惯不太好,影响了计算的竖式,学生在移动小数点时,原来的小数点的位置和新的小数点的位置不确定,所以上商的时候不知道小数点该打在哪里。当除数和被除数同时扩大时,有时候被除数就变了一个整数,就应该当作整数除法来算,当整数部分除完还有余数时,应该先在商中间打上小数点,再添0计算。我改学生的作业时发现,很多学生移动小数的位数错误,导致了计算思路不清晰,影响计算结果!而商不变的性质是小学中高阶段很重要的性质,它对于分数的学习也至关重要,但真正能把这个性质弄懂弄透,并不容易,很多学生不能体会这个性质的内涵,当利用商不变的性质解题时,其实是将小数除法的计算过程进行简化的,但是当被除数和除数发生相应的改变后,学生的思路跟不上,造成计算失误严重。另外,有部分学生认为学习小数乘除法是比较复杂的,懒与计算,喜欢使用计算器,我个人也认为,在科技发展的今天,使用计算器是很普遍也是很实用的,学生使用计算机没有错,但是从训练学生的.思维来看,这是与新课程相违背的!
新课标要求数学课程不仅应重视教学的内容和要求,更应充分关注课程中的学习过程,创设有利于学生发挥主体性和创造性的条件。在学习小数除法的时候,其实有很多性质和常识可以帮助我们初步判断商是否准确,比如被除数比除数小,商就比1小,被除数比除数大,商就比1大,被除数除以小于一的数,商反而大,包括之前提到的商不变的性质。可是学生由于缺乏生活经验,并不能很灵活的利用这些性质和意义,在求出错误商时,不注意检查!
小数除法,与整数除法的不同就主要在小数点上了。同一个题可以有多种方法解决,22.4÷7,22.4千米,是一周跑的总路程,问平均每天跑多少千米。孩子们想到了三个方法,第一个就让我惊讶,他把22.4先乘10,除以7之后,得数再除以10,从而得到正确答案。他很好的应用了除法的计算规律,这是在四年级时学过的。第二个学生把22.4千米转化为22400米,除以7之后得3200米,再转化为3.2千米。这个学生利用了转化的思想,转化是数学中很重要的一种思考方法,也常常被使用。第三个学生很干脆:“用竖式计算就可以。”呵呵,这可正是我们所需要的。于是,她一边说,我一边在黑板上写,当商了3之后,她说要先点上小数点,我问为什么。其他学生也看着她,是一样的问题。她说:“商的小数点要和被除数的小数点对齐。”显然,这名学生是预习过的,对教材中的这句话非常熟悉。我怕有学生对“商”和“被除数”不明白,特意在这儿多问了几句,说明哪一个是“被除数”,哪一个是“商”。剩下的事情就简单了,做了几个练习,有六名学生板演,都做得不错。
例2是一种新的情况,列出算式为5.6÷7,有好几个学生张口就说出了答案。但列竖式的时候,遇到了问题:根据上面的例题知道,商的小数点要和被除数的小数点对齐,可是商的小数点前面没有数啊?这也难不倒孩子们,立刻就说出:“添0”。我纠正:“是商0,当整数部分不够除的时候,商0,点小数点。”
在整数除法中,当有余数的时候,就不再计算了;现在学了小数,就可以添0继续算下去。例3就是这样一种情况,算式为1.8÷12,竖式中商了0.1之后,余数是6,教材中问:“接下来怎么除?自己试试。”有学生是预习过的,知道可以添0后继续计算。可也有学生有疑问:“为什么要添0呢?”我让孩子们讨论这个问题,是啊,为什么可以添0继续算?也许是熟视无睹了吧,我都没想过这个问题!讨论一段时间后,几个学生发言,但都不合适。于是,我引导他们往数的意义上去考虑,商1的时候,是把1.8看作18个十分之一;余数为6,添0(0也可以看作是落下来的.)后,即为60个百分之一,这样就可以继续计算了。
教后反思:在教学过程中发现,学生都能够想到用转化的方法把除数变成整数再进行计算。学生出现了两种方法:一种是根据商不变的性质把7.650.85转化为76585来计算,这正是我们要引导的方法;还有一种是利用商的变化性质只把除数0.85化为整数85,即计算7.6585,这样除得的商就会缩小1/100,再扩大100倍就会得到正确的商。这种方法说明了学生知识迁移能力比较好,但不是我们提倡的。所以我没再做过多引导。现在反思当时应当学生对这两种方法进行比较,使学生明白哪种做法更简便,更易理解。学生算理得较好,但在计算的过程中,除数和被除数小数点位置的确定是一个难点,部分学生容易出现错误。
在教学除法竖式时,必须规范。在明确算理的基础上,即运用商不变的方法把小数除法转化成整数除法后,怎么书写才能使计算准确率更高一点?事先我虽然也进行了考虑,但在实际教学时忽视了书写格式的强调。结果反馈练习时出现了很多同学书写格式不正确,有以下几种情况:小数点不划去;除数和被除数只划一个;只划小数点,但前面的0不划等等。实际上除数是小数的除法是难点,难就难在不但要理解算理,更难在竖式的书写上,既要先把除数的小数点画去,又要同时移动被除数的小数点,还要把原来的小数点打上小叉,向右移动后再点上。这是我考虑不周全的地方,只注重了算理,而忽视了格式。
在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:
一、不能顺利的移动小数点。
通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,个别同学书写不认真,数位对不齐。这也是部分学生错误的原因之一。
三、个别学生对于商中间有0的除法掌握还不够熟练。
除到哪位商那位,不够时忘记在商的位置上写0,再落下一个数。
现在反思其中的问题,觉得教学中在商的小数点的处理上没有具体的细化分析和引导,学生的理解也没有真正到位。这样,看似简单的问题却出现了错误也就再所难免了。因此,只有站在学生学习的角度去思考设计教学,不能以为一些问题能很简单的生成。教学从学生的新知生长点上去展开重点引导,在学生的迷茫处给与及时地指点,这样效果会更好。
课上完后,有了初步的反思,其中有个问题是——课堂时间不够用。在小组研讨中,综合大家的想法,知道一节课的教学目标不能太多,这样的话会出现“贪多嚼不烂”的结果。备课时要抓住一节课的重难点,课堂上要重点突出,突破难点。至于思想方法可以点到为止,逐步渗透。
在小组教研活动中,与苗老师和王老师同课异构,听评课中大家重点讨论了三个问题:
一、学生学习本节课的基础是什么?
经过听课与讨论发现,探究一个数除以小数的计算方法并能正确计算,学生需要具备三方面的基础知识。一是理解并灵活运用商不变的性质;二是能正确地把小数或整数的小数点向右移动按要求移动;三是能熟练地计算除数是整数的小数除法。
因学生刚刚接触除数是整数的小数除法学生需要具备的技能——除数的小数点向右移动几位,被除数的小数也向右移动几位,是结合了上面的第一与第二个知识点,也是本课的难点。分析难点难在这里思维层次比较多。
第一层次:把除数变为整数,去掉除数的小数点即可;——这一层次思维含量比较低。
第二层次:除数变成了整数,小数点隐掉或省略了。需要思考:划掉除数的小数点相当于把它的小数点向右移动几位。
第三层次:被除数的小数向右移动相同的位数时,有时小数位数够,如果不够还需要考虑添几个0,怎样添的问题。
因学生刚刚接触除数是整数的小数除法,计算不太熟练,更达不到半自动化(借用《给教师的建议》中的提法),再加上一个数除以小数的思维层次比较多,这部分的内容对于学生来说是比较难的。所以课前如果设计专门的准备课,再进行新知的探究也许能提高的教学效率,正所谓“磨刀不误砍柴功”嘛。
二、怎样处理学生自主探究出的正确方法与错误方法?
因为这节内容比较难,自己总怕学生自己学不好,所以我和王霞老师都采用了“半扶半放”的教学方式进行教学,而苗洁老师是完全放手让学生自主探究,然后收集各种问题进行分析。于是思考:自己不放手的原因是什么?是不相信学生的能力?还是怕一节课的时间不够用?(可能太拘于常规时间的限制)
常老师提出来,在教学中怎样处理千差万别的错误与唯一正确的计算方法之间的关系呢?当时我想,是让正确的先入为主,还是先把错误的拿出来剖析?是怕错误的先入为主,还是根本没有辨析错误的意识?
大家都认为苗老师的方法好,但在处理学生不同的计算方法的顺序上有分歧。一方的意见是先展示正确的方法,再分析错误的方法;另一方的意见是先处理有明显小错误的方法,再逐步地处理有大问题的方法,最后确定正确方法。经过讨论,大家多数同意第一种意见,先引导学生分析正确方法的算理,再用其中的道理分析错误方法的问题所在,这样不仅可以促使学生从另一个侧面理解算理,还可以帮助出错的学生弄清自己错在何处。这样学生“知其然也知其所以然”,才能更加灵活地解决综合在一起的各种计算题。
三、特例与一般例子哪个先出示比较好?
一个数除以小数教材上的第一个例子是“7.65÷0.85”,经过分析这是一个特例,特殊在被除数与除数的小数位数相同,紧跟着的“做一做”中前两个例子的被除数与除数的小数位数也相同,最后一个是三位小数除以两位小数的计算。这样安排会给学生造成“一个数除以小数,把被除数与除数都变成整数(或去掉小数点)”的表面印象。所以我将例子改为“1.296÷0.72”,这样的例子更为一般,也不会让学生形成上面不太严谨的印象。我的想法是“从一般到特殊”地引导学生进行探究。而苗老师与吕老师认为“7.65÷0.85”比较简单,应该按“从简单到复杂”的顺序引导学生展开探究。最终没有形成统一看法,认为在以后的教学中进行对比实验,看究竟哪一种方式的教学效率更好。
本节课是小学人教版第九册 第二单元的起始课,是学生掌握小数除以整数的方法的基础上进行的。
但计算教学枯燥无味,严重影响了学生学习的积极性。如何使学生轻松获得一定的计算能力呢?数学教学是数学活动的`教学,是师生之间,学生之间交往互助与共同发展的过程。新课程理念要求,以学生已有知识和经验为基础,通过个体与环境的相互作用主动建构知识的过程。新课程要求教师不能把知识的结构告诉学生,而要引导学生探究结论,帮助学生在走向结论的`过程中发现问题,探索规律,学得方法。
在这节课中,我先引导学生主动自主探究与合作。学生的学习过程是一个主动探究,合作交流的过程。在探究的过程中,我给学生提供了充分的材料,创造探究的氛围。
学生在探究过程中发现问题并能解决问题,这样的课堂教学促使了学习主动性,课堂氛围好,学生和思维得到了发展,先让学生说出自己的观点,在进行引导,这样在教师的环环引导下明白小数除以整数的方法及算理后,及时进行练习和巩固,并充分相信学生在整除法的基础上,能迁移出类似的小数除法,这样不仅能够培养学生养成细心,严谨的良好品质,而且学生的思维也能够得到较好的发展。
但是本节课在教学22.4÷4的过程中出现了我事先没有预设的情节。主要过程是这样的,我课前预设了三种情况,第一种是把被除数扩大十倍。第二种是在不改变商的大小的前提下把小数变成整数来算,结果超出了我的想象,学生居然根据被除数和商的变化规律,被除数扩大10倍除数不变,要想不改变结果商要缩小10倍。
应用这一规律也能计算出正确的结果。这个是我事先没有预料到的,课上我没有给予学生充分的肯定,因此我深深感受到上课之前要充分对学生了解。所谓备课不仅要备教材还要备学生,如果对学生不能进行了解,则无法顾及到学生的想法不知道学生真正需要的。学生第一单元学习的是小数的乘法,对于因数和积的变化规律相当的熟悉。
所以在学习新知识的时候,学生最容易想到的就是这个规律,从教学方法来说,每讲一个新的内容或稍复杂的问题,一定要“吃透”新在什么地方,是在什么基础上的新。也要发现与前面知识的联系。
根据数学知识的内在联系,利用学生已掌握的知识,学习新知识。把新知识纳入到学生已有的认知结构中去,从而扩展学生原有的认知结构。所以这节课之前,我要能够对学生进行充分了解,也许就能避免这个问题。
总之,“学而不思则罔,思而不学则殆。”这句至理名言对我们的教育教学也有着深刻的指导意义。我们不仅要重视课堂教学前的准备,而且还不能忽略课后的反思和总结。教师能及时总结和反思课堂上的得与失,恰恰就是找到再一次上好课的根源;相反,不及时反思或反思不到位,往往会失去良好的教学反馈资源。所以,如果教师能及时合理的抓住这些问题,进行反思分析,找出解决问题的策略,就会帮助教师提高课堂教学的有效性。
今天,我上了一节《一个数除以小数》。从基本理念、教学构思、操作过程等方面去审视《一个数除以小数》的备课、教学教过程,发现了不少值得深思、改进的问题。
思想解放的程度不够,从备课到讲课,因为受传统教学思想的影响,生怕重难点不突出,生怕学生不能较为熟练地掌握“一个数除以小数”的计算方法和技巧,生怕完成不了教学任务,追求40分钟以内的所谓知识的完整性太多的顾虑,导致产生前怕虎,后怕狼的心理,缩手缩脚,该放手做的事情不敢理直气壮地去做,走不出传统教学模式的影子,影响着新课标、新理念的实施,特别是以下几个方面存在的'问题尤其突出。
一、一个数除以小数计算方法的依据是商不变规律,又牵涉到小数点移动规律,又想从除数是整数的小数除法引入,导至复习时面面俱到,时间用得太多。有点本末倒置了。
二、 在教学“除数是小数的除法法则”时,存在操之过急,包办太多的现象。
本来,通过例5的学习,学生已经理解除数是小数的除法计算方法的算理是“商不变性质”和“小数点位置移动引起小数大小变化”的规律,把除数是小数的除法转化成除数是整数的除法后,就能用“除数是整数的小数除法”的计算方法进行计算。利用迁移,明确转化原理,完全可以由学生通过小组讨论总结出“除数是小数的计算法则”不必要把这个过程总让教师“扶着走”。
第二单元单元教学目标:
1、使学生掌握小数除法的计算方法。
2、使学生会用“四舍五入”法,结合实际情况用“进一”法和“去尾”法取商的近似数,初步认识循环小数、有限小数和无限小数。
3、使学生能借助计算器探索计算规律,能应用探索出的规律进行小数乘除法的计算。
4、使学生体会解决有关小数除法的简单实际问题,体会小数除法的应用价值。
小数除法,与整数除法的不同就主要在小数点上了。同一个题可以有多种方法解决,22.4÷7,22.4千米,是一周跑的总路程,问平均每天跑多少千米。孩子们想到了三个方法,第一个就让我惊讶,他把22.4先乘10,除以7之后,得数再除以10,从而得到正确答案。他很好的应用了除法的'计算规律,这是在四年级时学过的。第二个学生把22.4千米转化为22400米,除以7之后得3200米,再转化为3.2千米。这个学生利用了转化的思想,转化是数学中很重要的一种思考方法,也常常被使用。第三个学生很干脆:“用竖式计算就可以。”呵呵,这可正是我们所需要的。于是,她一边说,我一边在黑板上写,当商了3之后,她说要先点上小数点,我问为什么。其他学生也看着她,是一样的问题。她说:“商的小数点要和被除数的小数点对齐。”显然,这名学生是预习过的,对教材中的这句话非常熟悉。我怕有学生对“商”和“被除数”不明白,特意在这儿多问了几句,说明哪一个是“被除数”,哪一个是“商”。剩下的事情就简单了,做了几个练习,有六名学生板演,都做得不错。
例2是一种新的情况,列出算式为5.6÷7,有好几个学生张口就说出了答案。但列竖式的时候,遇到了问题:根据上面的例题知道,商的小数点要和被除数的小数点对齐,可是商的小数点前面没有数啊?这也难不倒孩子们,立刻就说出:“添0”。我纠正:“是商0,当整数部分不够除的时候,商0,点小数点。”
在整数除法中,当有余数的时候,就不再计算了;现在学了小数,就可以添0继续算下去。例3就是这样一种情况,算式为1.8÷12,竖式中商了0.1之后,余数是6,教材中问:“接下来怎么除?自己试试。”有学生是预习过的,知道可以添0后继续计算。可也有学生有疑问:“为什么要添0呢?”我让孩子们讨论这个问题,是啊,为什么可以添0继续算?也许是熟视无睹了吧,我都没想过这个问题!讨论一段时间后,几个学生发言,但都不合适。于是,我引导他们往数的意义上去考虑,商1的时候,是把1.8看作18个十分之一;余数为6,添0(0也可以看作是落下来的)后,即为60个百分之一,这样就可以继续计算了。
《一个数除以小数》的教学反思
“除数是小数的除法”是小学数学教学中的一个重点,又是难点,它在计算教学中处于关键地位。它是综合性最强的计算,包含了商不变的性质、小数的基本性质、试商的方法,还有商中间有零的除法、商末尾有零的除法。本节课的教学重点是让学生理解并掌握一个数除以小数的算理和计算方法。教学难点是让学生理解“被除数的小数点位置的移动要随着除数的变化而变化”。
上完这节课我后做了认真的反思,再加上听取各位老师的诚恳评价,觉得有以下值得肯定:
1、故事引入,既激发了兴趣又为新知做了铺垫。
2、教学时重视知识间的联系,引导学生将新知识转化成旧知识(将一个数除以小数转化成小数除以整数)进行学习,注重“转化”的数学思想方法。
3、调动了小组合作学习的积极性,并注意留给学生充分独立思考的时间和机会,使学生成为真正的'课堂主人。
4、能逐渐培养学生独立思考的能力,合作的意识和能力。
5、学练结合紧密,学生练习充分。
6、课堂设计精炼,不拖泥带水。
存在的问题:
1、设计教学时考虑欠周全,导致课堂后紧,可以将复习环节中小数的扩大及小数点的移动和“中国结”的出示都删掉,节省时间使后面的学习更充分。
2、对教学重点“除数为什么要转化成整数”。讲解不够细致,本节课虽然比较注重“除数为什么转化成整数”,但还出现了部分学生不明白为什么要把除数转化成整数,以致于在练习环节学生先把被除数转化成整数,再把除数转化成整数,理解错误。
3、时间把握不够好。本节课,在复习环节和引题时用的时间有点多,导致对计算方法记忆不够,达标测评时间短,任务未完成,测评很失败。
通过本节课的教学,让我认识到了自身教学存在的问题,在今后的教学中一定要以学情为先设计环节,设计过程,设计练习,让学生在体验中学习、理解、感悟。不断提升自身教学水平,真正做到因人施教,并且能让学生轻松愉悦的学习,快乐健康的成长。
一个数除以小数教学反思
一个数除以小数是人教版五年级上册第三单元的内容。是在学生学习过除数是整数的除法后进行的。除法的学习由口算过渡到笔算,在三年级学生已经接触到了,不过所认识的都是除数是一位数的除法,学生基本上明白了要怎样去操作,但是到了五年级学生学习小数除数时,他们往往都存在着不同程度的疑惑,主要是小数点的位置把握不准。由于对教材把握不太透彻,这节课有地方讲的不够透彻。在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道。
也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,数位对不齐。这也是部分学生错误的.原因之一。
三、商的小数点与被除数原来的小数点对齐。
四、算时用用商乘以移动小数点后的除数。
五、除到哪位商那位,不够时忘记在商的位置上写0,再拉下一个数。还有部分学生用余数再除一次。
现在反思其中的问题,觉得教学中在商的小数点的处理上没有具体的细化分析和引导,学生的理解也没有真正到位。这样,看似“简单”的问题却出现了纷繁的错误也就再所难免了。因此,只有站在学生学习的角度去思考设计教学,不能以为一些问题能很简单的生成。教学从学生的新知生长点上去展开重点引导,在学生的迷茫处给与及
时地指点,这样或许效果会好许多。
教学完小数除法后,我发现学生原有的书写习惯不太好,影响了计算的竖式,学生在移动小数点时,原来的小数点的位置和新的小数点的位置不确定,所以上商的时候不知道小数点该打在哪里。当除数和被除数同时扩大时,有时候被除数就变了一个整数。
就应该当作整数除法来算,当整数部分除完还有余数时,应该先在商中间打上小数点,再添0计算。我改学生的作业时发现,很多学生移动小数的位数错误,导致了计算思路不清晰,影响计算结果!而商不变的性质是小学中高阶段很重要的性质,它对于分数的学习也至关重要,但真正能把这个性质弄懂弄透,并不容易,很多学生不能体会这个性质的内涵,当利用商不变的性质解题时,其实是将小数除法的计算过程进行简化的,但是当被除数和除数发生相应的改变后,学生的思路跟不上,造成计算失误严重。在以后的教学中,要尽量避免以上情况。
《一个数除以小数》教学反思张红梅
《一个数除以小数》是小学数学计算教学中的一个重点,又是难点,它在计算教学中处于关键地位。本节课的教学重点是让学生理解并掌握一个数除以小数的算理和计算方法。教学难点是让学生理解“被除数的小数点位置的移动要随着除数的变化而变化”。
本节课的`教学自认为有以下几点做得比较好:
1.教学时我重视知识间的联系,引导学生将新知识转化成旧知识(将一个数除以小数转化成小数除以整数)进行学习,注重“转化”的数学思想方法。
2.课堂上注意给学生充分独立思考的时间和机会。比如,列出算式7.65÷0.85后,问学生“这个算式和我们以前学的除法算式有什么不同?能不能用我们已经学过的知识解决呢?把你的思考过程写在练习本上。”尊重学生原有的知识结构,让学生有一个独立思考的时间,通过思考出现认知冲突,从而激起学生的学习兴趣。
3.课件制作符合教学的需要,尤其是竖式的展示过程,把过程呈现的很清楚,便于学生更好的理解算理。
本节课还存在许多不足之处:
1.复习环节应该加入“除数是整数的小数除法”。本以为学生刚刚学习过“除数是整数的小数除法”,应该没有什么问题,另外考虑到时间问题,复习环节就没有加入此部分内容,出现了在新授环节学生计算不够熟练。为了本节课的学习,建议在复习环节加入两道除数是整数的小数除法。
2.没有彻底讲清楚“除数为什么要转化成整数”。本节课,我也比较注重“除数为什么转化成整数”,但还出现了部分学生不明白为什么要把除数转化成整数,以致于在练习环节学生先把被除数转化成整数,再把除数转化成整数,理解错误。
3.在处理“12.6÷0.28”时,环节处理不是很合理。本节课在处理“12.6÷0.28”时,我是直接把竖式放手给学生,让学生自己做,并发现问题解决问题(在被除数的末尾用“0”补足),我高估了学生的学习水平,学生不能够解决这个问题,在教师的帮助下学生才解决了这个问题。建议,此环节可以让学生通过小组合作完成。
4.时间把握不够好。
通过本节课的教学,让我认识到了自身教学存在的一些问题,在今后的教学过程中我会逐步改进。
《小数除以整数》教学反思
榆次区经纬小学 张玉珍
本节课的内容是在学生掌握了整数除法计算的基础上进行教学的。教学的重点是引导学生理解并掌握小数除以整数的计算方法,难点是理解商的小数点定位问题。
成功之处:
1.紧紧围绕知识衔接点,唤醒学生对整数除法计算方法的回忆。在教学例1中,先让学生按照整数除法算出商,让学生进一步熟悉整数除法的计算方法,然后再解决小数点的问题,重点讲清商的小数点为什么与被除数的小数点对齐的道理。
2.强化小数除以整数的.计算方法的过程。让学生不要受被除数的小数的影响,首先按照整数除法去除,再处理小数点。在教学例2中,继续联系例1的教学方法,先让学生算出56除以8的商,重点让学生知道8应写在什么位置,为什么要把商写在十分位上,然后再处理小数点,依然按照商的小数点要与被除数的小数点对齐,最后再考虑整数部分不够除,商0。在教学例3中,主要让学生思考如果有余数怎么计算,学生通过已有知识经验能够找到解决问题的办法,也就是如果有余数,要添0再除,为学生学习新知扫清知识障碍。
不足之处:
通过作业的反馈,学生主要存在以下问题:
1.忘记点小数点。
2.忘记写单位名称。
3.计算出错。
再教设计:
训练学生认真做题的良好习惯,特别是忘记写得数、忘记写单位名称等普遍性错误,减少不必要的失误,注重强化小数点、规范做题、认真书写,养成验算的好习惯。
五年级数学《一个数除以小数》教学反思
教后反思:在教学过程中发现,学生都能够想到用转化的方法把除数变成整数再进行计算。学生出现了两种方法:一种是根据商不变的性质把7.650.85转化为76585来计算,这正是我们要引导的方法;还有一种是利用商的变化性质只把除数0.85化为整数85,即计算7.6585,这样除得的商就会缩小1/100,再扩大100倍就会得到正确的商。这种方法说明了学生知识迁移能力比较好,但不是我们提倡的。所以我没再做过多引导。现在反思当时应当学生对这两种方法进行比较,使学生明白哪种做法更简便,更易理解。学生算理得较好,但在计算的过程中,除数和被除数小数点位置的确定是一个难点,部分学生容易出现错误。
在教学除法竖式时,必须规范。在明确算理的基础上,即运用商不变的方法把小数除法转化成整数除法后,怎么书写才能使计算准确率更高一点?事先我虽然也进行了考虑,但在实际教学时忽视了书写格式的强调。结果反馈练习时出现了很多同学书写格式不正确,有以下几种情况:小数点不划去;除数和被除数只划一个;只划小数点,但前面的0不划等等。实际上除数是小数的除法是难点,难就难在不但要理解算理,更难在竖式的书写上,既要先把除数的小数点画去,又要同时移动被除数的小数点,还要把原来的`小数点打上小叉,向右移动后再点上。这是我考虑不周全的地方,只注重了算理,而忽视了格式。
在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:
一、不能顺利的移动小数点。
通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,个别同学书写不认真,数位对不齐。这也是部分学生错误的原因之一。
三、个别学生对于商中间有0的除法掌握还不够熟练。
除到哪位商那位,不够时忘记在商的位置上写0,再落下一个数。
现在反思其中的问题,觉得教学中在商的小数点的处理上没有具体的细化分析和引导,学生的理解也没有真正到位。这样,看似简单的问题却出现了错误也就再所难免了。因此,只有站在学生学习的角度去思考设计教学,不能以为一些问题能很简单的生成。教学从学生的新知生长点上去展开重点引导,在学生的迷茫处给与及时地指点,这样效果会更好。
人教版小学六年级语文下册《一个数除以小数》的教学反思
今天,本着常态课的思想,给年段老师上了一节课。从基本理念、教学构思、操作过程等方面去审视《一个数除以小数》的备课、教学教过程,发现了不少值得深思、改进的问题。
思想解放的程度不够,从备课到讲课,因为受传统教学思想的影响,生怕重难点不突出,生怕学生不能较为熟练地掌握“一个数除以小数”的计算方法和技巧,生怕完成不了教学任务,追求40分钟以内的所谓知识的完整性……太多的顾虑,导致产生前怕虎,后怕狼的心理,缩手缩脚,该放手做的事情不敢理直气壮地去做,走不出传统教学模式的影子,影响着新课标、新理念的实施,特别是以下几个方面存在的问题尤其突出。
一、一个数除以小数计算方法的依据是商不变规律,又牵涉到小数点移动规律,又想从除数是整数的.小数除法引入,导至复习时面面俱到,时间用得太多。有点本末倒置了
二、在教学“除数是小数的除法法则”时,存在操之过急,包办太多的现象。本来,通过例4和例5的学习,学生已经理解除数是小数的除法计算方法的算理是“商不变性质”和“小数点位置移动引起小数大小变化”的规律,把除数是小数的除法转化成除数是整数的除法后,就能用“除数是整数的小数除法”的计算方法进行计算。利用迁移,明确转化原理,完全可以由学生通过小组讨论总结出“除数是小数的计算法则”不必要把这个过程总让教师“扶着走”。