教培参考
教育培训行业知识型媒体
发布时间: 2024年11月25日 20:38
本节课内容在学生学习了长方形、正方形、平行四边形、三角形和梯形的特征以及长方形、正方形面积计算的基础上进行教学的,同时又是进一步学习三角形面积、梯形面积等知识的基础。
一、成功之处:
1、创设问题情境,引发矛盾冲突,激发学生的学习兴趣。在教学中,通过创设“这两个花坛哪一个大呢?”的情境,引发学生的思考,比较这两个花坛的大小,就是比较它们的面积大小,而长方形的面积学生已学过,非常简单就可以得出,但是平行四边形的面积学生没有学过,如何求平行四边形的面积呢?通过这样的疑问,引领学生探索平行四边形的面积计算公式。
2、渗透“转化”思想。转化思想是学生学习数学的非常重要的思维方式,利用转化思想学生可以把新知识转化为已学过的旧知识,利用旧知识解决新问题。在本课教学中,学生首先通过数方格的方法初步发现了长方形和平行四边形这两个图形的面积是相等的,也发现长方形的面积是底乘高,平行四边形的面积是底乘高,但是如何验证这个计算公式呢?学生通过手中的平行四边形会联想到把它转化为长方形,这时教师放手让学生通过剪一剪、拼一拼,自己动手研究推到平行四边形的面积计算公式。这样设计教学过程由浅入深、由易到难、由具体到抽象,学生在探索的过程中逐步体会转化思想在学习中的重要作用。
二、不足之处:
学生虽然能够推导出平行四边形的面积计算公式,但是仍有个别学生在表述上还存在一些困难。
三、再教设计:
加强学生的语言表述能力,做到规范、严谨。
数学教学的价值目标不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得思想方法,经历解决问题的过程。本节课遵循这一原则进行设计,结合教材内容及学生实际,有以下几点思考:
一、创设情境,方法巧妙迁移
数学内容来源于生活实际,同样也应当应用于生活。上课伊始,我通过解决两块土地的面积哪块大这个问题,让学生自己想到运用原有的“数格子”的方法解决问题。让学生积极主动地投入到数学活动中去。我创设了学生熟悉的生活情境,学生很喜欢,很快的就投入到学习中去,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,结合求面积的实际操作性,进而引发学生的猜测,并进一步引导学生将平行四边形的面积转化成长方形的面积进行推导。
二、学生自主合作探究
苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中我先是给学生提供学习单,由学生独立数格子,填表格,观察发现,开始探究平行四边形的面积,通过发现提出求平行四边形面积的猜想。接着是读活动要求,小组合作通过剪一剪、拼一拼等方法,推导出平行四边形的面积公式。来进行公式的验证。给予了学生足够的自主学习、小组讨论的时间,因此,在汇报时学生能够有条理的说出自己的方法,进行交流,很好的掌握了平行四边形公式的推导过程,学生获取知识的能力、观察能力和操作的能力得到培养。
三、拓展方法,渗透数学思想
教学时,以学生的验证推导为主,先引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。转化的思想,是数学学习和研究的重要思想方法。启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想,充分发挥学生的想象力,培养了创新意识。学生探究出了将平行四边形转化成长方形的三种方法,并通过操作加以演示推导。在学生探究后,我出示了第四种方法,还让学生观察这几种方法有什么相同点,从而让学生明确自己刚才所运用的转化的思想方法。在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
四、巩固练习,深化应用。
我设计了具有针对性的习题组。练习设计的优化是优化教学过程的一个重要方面。本课的习题设计灵活运用公式,引导学生熟练利用平行四边形的面积公式解决生活中的实际问题,让学生在练习的同时提高应用知识解决问题的能力。虽然本节课能以学生为主体,教师主导,但课堂上能够对学生起到导向和引领的有效的评价语言还需要进一步提升。教学是一门有着缺憾的艺术。做为教者的我们,只有用心思考,不断改进,我们的课堂才会日臻具有艺术性!
在多边形的面积这一单元的教学中,都是以引导学生自主探索为教学目标。让学生通过剪拼、平移、旋转等方法,把未知转化成已知,并在动手实践的过程中,发现各种图形之间的内在联系,从而探索出平面图形的面积公式。
平行四边形面积公式的基础是长方形的面积公式,学生在三年级已经掌握,所以教材首先引导学生探索平行四边形的面积公式。例1出示了两组不规则图形,让学生比较每组的两个图形面积是否相等?通过交流运用剪拼、平移的方法转化成长方形后发现每组的两个图形面积相等。接着进入例2的教学环节:出示一个平行四边形,提出“你能把平行四边形转化成长方形吗?”带着学生进入了平行四边形面积的探索过程。先让学生感受转化思想再运用转化方法探索新知,但是学生在这一过程中真正是自主探索吗?教师是引导还是支配?如何真正引导探索呢?我产生了这样的想法:沟通知识间的联系,引发对新知的自主探索。
呈现第一个问题:“有四根小棒,两根8厘米,两个4厘米,你能拼成学过的平面图形吗?请画在方格纸上”。(学生在方格纸中画出了平行四边形或长方形)
呈现第二个问题:“这两个图形有什么联系吗?”
(学生出现争议:周长相同,面积相同;周长相同,面积不同;周长和面积都不同。)
对学生出现的争议,最好的办法就是让学生自己解决。于是辩论开始了:
生1:“都是由两根8厘米和两根4厘米的小棒围成的图形,周长是相等的”。对于周长相等,大家都达成了共识;生2:“长方形面积是长乘宽,8×4=32,平行四边形的面积也是8×4=32,所以面积相等”;生3:“不对,平行四边形的边是斜的,长方形的这条边是直的,不能都用8×4”;对于面积的比较产生了异议。
师:“认为平行四边形的面积是8×4的同学请说明这样算的道理;认为不是8×4的同学请想办法算出这个平行四边形的面积?”同学们拿出课前剪下的平行四边形忙开了,自主探索的过程自然开始了。
20XX年10月24日,我参加了经开区数学基本功比赛,执教《平行四边形的面积》这节课,实施教学后一些问题让我陷入思考。下面从我备课及执教的经历谈起。
首先,对于内容的分析,我在教学设计中已经阐明,因此不再赘述。对于学情,我以本校五年级学生为参照,调研了本校学生对此知识的想法,根据学生问卷的回答情况发现了这样的问题:
1、长方形的面积公式学生基本都能写对,但出现与算周长混淆的情况,并且已经想不起来长方形的面积是由数方格推导出来的。
2、求平行四边形的面积时出现这样几类情况。
(1)用算周长的方法计算,占15%;
(2)用邻边相乘的方法计算,占35%;
(3)知道转化成长方形,但不能正确计算,占23%;
(4)其他(包括不知道怎么算),占27%。
虽然我深知读懂教材、读懂学生的重要性,但理解有限,在设计与执教过程中,反映出以下三个问题。
一、学情分析能力不足
我虽然进行了学情分析,但由于自己的理解有限,我没有分析到其实学生对于找原来的平行四边形与转化后的长方形之间的等量关系其实是不理解的,是一个难点,导致我以如何向学生渗透转化思想为重心了。
二、课堂调控能力有限
在实施教学的时候由于学生的学情不同,执教班级学生基本已经知道平行四边形的面积等于底乘高,加之我的现场调控能力有限,因此并不能顺着学生的思维进行教学,跟我设计的初衷产生了水土不服的现象,但后来我仔细回想了执教过程中的一些学生表现,优等生知道公式,并不代表所有学生都知道,应该具备一些调控能力让所有学生经历验证的过程,但错过了,这一点也说明我的课堂调控能力是需要加强的。
另外一个问题是找等量关系时,我由于时间的限制,代替了学生的观察发现,带领学生直接演示了原来的平行四边形与转化后的长方形之间的关系,推导出了公式,这点挺遗憾的。
三、数学语言不严谨
在此次教学中,我的数学语言不够严谨,比如数学上专业的术语“平移”等说得不规范。
针对以上问题我想教师的调控能力这些非一日之功,在以后的课堂教学中我会尽量注意记录自己的问题与语言,不断反思,从而慢慢提高,增强自己上现场课的经验。
对《平行四边形的面积》的设计,我没实现的是,找等量关系过程对学生是一个难点,我对突破这个难点的想法如下。
预设教学片段:
师:同学们,把我们的长方形还原为平行四边形,你能标出平行四边形的底和对应的高吗?请同学们动手标一标吧。
师:同学们,把平行四边形转化成长方形,你能找出原来的平行四边形和转化后的长方形有哪些相等的关系吗?小组讨论并相互说说你的发现。
当然,这是我的初步想法还没有进行实际教学,因此不知道这些能不能突破难点。
通过本次讲课,让我真正乐趣无穷的是对课不断地思考,发现课的奥妙,有遗憾,有困惑、有思考……我想这些都是成长,教学时间那么长,我想读懂教材,读懂学生,这不容易的事总会慢慢理清,然后,不断成长!
自己比较喜欢的数学课是几何学方面的,喜欢一些空间想象的,今天终于是学到了。今天和孩子们一起研究和学习了《平行四边形的面积》。
本节课是在学生掌握了平行四边形的特征以及长方形,正方形面积计算的基础上进行的,对于本节课的设计理念是主要让学生在自主探究和亲自经历的基础上进行对平行四边形的面积公式的一个探究。本节课的教学有如下的感受:
本节课的在开始的时候先让学生回忆了长方形的面积的计算公式,之后给出了平行四边形和学生一起复习了平行四边形的一些特征,然后给出了课本上的情境图,一个长方形花坛、一个平行四边形花坛为你能知道这两个花坛的面积吗?让学生观察图形,把学生的几何视野拓展到人类生活的空间,学生思维活跃,把能看到的图形到表达出来了,更有学生发现校门前的两个花坛,一个是平行四边形一个是长方形,我顺次让他们猜测两个花坛的大小,这时候学生说:“长方形的我们可以知道,只要量出长方形的长和宽就可以求面积了,可是对于平行四边形的就不会了”,为本节课的重点做了铺垫。这时候引出本节课的课题《平行四边形的面积》。然后让学生用数方格的的方法把两个图形做了比较、填表,暗示了平行四边形的面积和长方形的面积之间的联系,把两部分内容设计在同一张表格里引导学生从数量角度体会转化前后在长度和面积上的对应联系,为学生进一步探寻平行四边形的面积的计算方法做准备。在这一过程中我发现学生的语言表述不是很准确。在教学中注意让学生对自己的学习过程进行反思,当学生感到数方格的方法有局限性的时候,由此便会产生平行四边形面积的计算的方向和思路。从而引出本节课的教学重点。
接下来,问:“平行四边形的面积怎么求?”给学生一个想象的空间,这时让学生想一想,在大家的七嘴八舌的汇报中,这时候绝大多数的学生都知道了做法,然后让学生小组共同探讨得出平行四边形的面积计算公式,在开始的时候,发现学生的思路很简单,只是把平行四边形沿一条高剪开,然后拼成一个长方形,从而找到长方形和平行四边形的联系。再就没有了其他的方法,然后我借助课件的演示,给学生做了一个提醒,然后孩子们才恍然大悟,原来还可以这样做的啊,然后让学生仿照老师的做法自己来做一遍,让学生一边操作,一边和同桌互相说一下自己的想法。然后再利用课件给孩子们做一次加深,让没有想到的学生能够看看更多的思路和方法。
在练习的设计中,层次感比较强,让学生在形式多样的联系中,加深对平行四边形的面积的应用和理解。
本节课的不足之处是:
1、学生自己动手做的时候,给与学生的时候比较短,教师包办的多,而且教师下学生做的时候总是时不时的插话,打断学生的思路。
2、在得出公式的时候,教师包办了,应用让学生自己通过自己的拼剪来观察原平行四边形和拼剪后的长方形作比较,从中发现他们之间的联系。最终让学生自己得出计算公式就更好了。
3、练习中没有设计公式的变化练习,应该加入一些有些变形的练习就更好了。
在再教的时候,我会把以上的一些不足之处都一一改正,让学生对平行四边形的面积的公式有更好的认识和理解。
总之,我感觉这节课是成功的,学生通过自己的合作探究找到了对于平行四边形的面积的解决方法。
开学初,就被告知新老师要上汇报课,作为一个教书“小白”,顿时觉得有一丝紧张。估摸着应该在期中考试前,于是选了第四单元的内容。后来时间调整,重新选了《平行四边形的面积》这一课。
这节课是在学生已经掌握了长方形面积的计算公式和平行四边形特征的基础上进行学习的,由数格子的方法切入,我根据学生已有的知识水平和认知规律进行教学,现针对教学设计思路和实际课堂教学效果进行自我反思。
1、数学内容来源于生活实际,同样也应当应用于生活。上课伊始,我通过解决两块土地的面积哪块大这个问题,让学生自己想到运用原有的“数格子”的方法解决问题。学生积极主动地投入到数学活动中去。创设了学生熟悉的生活情境,学生也体会到了计算它的面积的用处,激发起学生的求知欲望。
2、动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中由学生独立数格子,填表格,观察发现,开始探究平行四边形的面积,填写表格,观察表格数据后引出平行四边形面积的猜想。接着是读操作要求,小组合作通过剪一剪、拼一拼等方法,推导出平行四边形的面积公式。来进行公式的验证。给予了学生足够的自主学习、小组讨论的时间,因此,在汇报时学生能够有条理的说出自己的方法,进行交流,并经历了知识的形成过程。
3、拓展方法,渗透数学思想。在教学时,以学生的验证推导为主,学生在之前大胆猜测的基础上,加上适时引导,学生自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。转化的思想,是数学学习和研究的重要思想方法。启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想,充分发挥学生的想象力,培养了创新意识。通过剪一剪,拼一拼,学生探究出了将平行四边形转化成长方形的方法,并通过操作加以演示推导。
4、练习设计的优化是优化教学过程的一个重要方面。本课教学练习题中,第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,让学生判断计算是否正确,从而强调底和高必须对应,学习上更上一个层次。
结合实际效果,自我总结本节课的不足之处有:(1)转化思想渗透不够,平行四边形的面积计算公式是学生动手操作转化为长方形从而推导出来的,这一过程当中,应将“转化”这一数学思想渗透。而在实际教学中,转化思想没有突出,渗透不够。(2)在学生把平行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法。后两种方法只是教师讲解、演示给学生看。(3)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。(4)时间把握得不好,对知识的巩固运用做的不够,本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力,由于对时间把握不够,在课件中删除了这道题。
经验+反思=成长,是学者波斯纳提出的一个教师成长的公式,它清楚地揭示了反思在教师专业成长中的重要意义。因此,在以后的教学中,还需多反思。
《平行四边形面积的计算》这一内容是在学生学习了长方形、正方形面积计算以及平行四边形的特征,并会画出平行四边形的底和对应的高的基础上进行教学的,是学习三角形、梯形面积计算的基础。现将本节课的教学反思如下:
1.重视操作体验,发展学生空间观念
《数学课程标准》指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”
教学中,我关注学生已有的知识经验,充分放手,先让学生大胆猜想,积极地为自己的猜想寻找验证的方法,这样学生主动地参与到学习中。接着我引导学生利用手中的学具,让学生动手实践,学生在实践过程中想到了数方格和剪拼的方法,自主探究出平行四边形沿着高剪下来能转化为长方形的方法。小组交流、集体汇报找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,再利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
2.注重思想方法渗透,引导探究
“转化”是数学学习和研究的一种重要思想方法。学生虽然想到了把平行四边形变成长方形,但并不知道这就是“转化”,我对学生的这一方法进行了提升。在具体操作过程中,我努力让学生通过“猜想——验证——结论”的过程,帮助学生掌握探索问题的一般方法,为后面探究三角形、梯形的面积计算方法提供方法迁移。
运用现代化教学手段,对几种剪拼的方法进行总结,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。
3.注重优化练习,拓展思维
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。
第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。
第二题4道判断题,包含了学生的一些常见错误。第一道是强调面积单位,第二道强调计算时单位名称的统一,第三道强调平行四边形的面积是底乘高而不是底乘邻边,第4道强调底和高必须对应,强化学生的认知。
第三题比较平行四边表的面积,认识等底等高的平行四边形的面积相等。本课练习能促使学生牢固的掌握新知。
值得反思的的是:
1.平行四边形转化成长方形课本上给出了两种方法,一种是沿着平行四边形的左上角的顶点剪开,另一种是沿着任意一条高剪开。其实并不是只沿着高剪开能拼成长方形,我能想到的还有将两个角剪下来平移到相对的部分。在教学过程中并没有展示这种方法,一是在学生探究过程中学生没出现这种方法(也许放的不够的原因);二是考虑到学生的实际水平,不敢讲得太深。
2.沿着平行四边形的高剪下来平移到相对的部分,一定会拼成长方形吗?这也是需要验证的。也是考虑到实际情况,把这一部省去了,不知道是否会给学生造成错误的思维方式,是不是扼杀了学生数学的天赋。
3.预设不充分,学生的主体地位体现不够。展示数方格这种方法的时候,学生是沿着平行四边形的高剪下来,移到另一边去拼成长方形,把半格的拼成整格来数,这是一种多么好的方法,但老师不但没有预设到,而且没有及时领会到学生的意图,急于走预设,把正确答案给出,导致这一环节不完整,教师思路不那么清晰了,这是我今后最应该注意并改正的。
4.透过这一节课的教学可以看到,很多学生不敢动手,有想法不会表达,所以我们一线教师应该清醒地认识到加强常态课研究的必要性,在日积月累中提升学生的数学素养。
教学是一门有着缺憾的艺术。做为教师,往往在执教后留下或多或少的遗憾,只要我们思考了,改进了,我们的课堂就会更加精彩。
1.先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的,做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,渗透了转化的思想方法。
2.注重学生数学思维的发展,设计了剪一剪、拼一拼等学习活动,让学生在活动中探索出平行四边形的面积公式。
3.注重了师生互动、生生互动,这节课始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。师生之间应该互有问答,学生与学生之间也要互有问答。
《平行四边形的面积》是北师大版五年级上册第四单元第三课时的内容。这在学生已经会在格子图中求出图形的面积,已经认识了平行四边形的底和高,并会找、会画相对应的底和高的基础上进行教学的,基于学生的知识起点和学生的学情分析,我有了本课的教学设计。我追求的是让教学贴着学生的思维前行,让学生在直观操作中学习数学。今天,我有幸将这课的设计在早毓小学展示。现静下心来反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、创设贴近学生生活的学习情境,激发学生探究的欲望。
首先,我对教科书中的主情境加以修改,以贴近学生的生活情景导入,利用课件出现学校操场旁有一块长方形的空地要绿化,请同学们算出绿化的面积,随即从这个长方形中出现一块没有任何数据的平行四边形地,再引导学生将这个平行四边形与长方形比一比,再估测这个平行四边形的面积大约有多少?以培养学生估测意识。
继而询问学生“有什么办法能比较准确地算出这个平行四边形的面积”。学生根据已有的学习经验马上想到用数格子和计算的的方法。然后围绕“有什么办法能比较准确算出这个平行四边形的面积?”组织学生动手探究。这样既复习了旧有知识,又为学习新知识做铺垫,同时也比较自然地引入新内容。
二、注重“以生为主,教师为辅”,让学生真正成为学习的主人。
1.《新课程标准》明确指出:“有效地数学学习活动不能单纯依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”动手实践是学生学习数学的主要方式之一。它有利于让学生参与知识的形成过程,促进学生对抽象数学知识的理解,而且培养了学生的思维能力、创新能力和合作精神。因此,在本课的教学设计中,我利用学生好动、好奇的心理,将这块平行四边形做成卡片模型,并提供了一些探究的材料和工具。让学生根据自己的学习经验,自主选用喜欢的方法来验证自己的猜想。为学生创造了一个观察、操作的机会,以充分发挥学生的学习主动性,学生在兴趣盎然的操作中,把抽象的数学知识变为活生生的的动作,自然而然的让学生从“要我学”变成“我要学”。有的学生根据自己的学习经验想到了数格子的方法;能力较好的学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。
2.“学生是学习的主人,把课堂的时间交还给学习的主人”这是新课标在提倡的重点。是的,学生学习,教师是不能替代的,只有让学生在动手操作和交流地碰撞中。学生才能真正理解和掌握这种抽象的公式。因此,在展示学生的活动方法时,我有意识地先展示数格子的方法,当学生介绍完数法后,有的学生马上发现,先移后数的方法更快的得到这个平行四边形的面积,其实,在这里,学生已初步体验的“剪”和“拼”方法了。所以我紧接着展示学生的剪拼法。在学生的汇报中,我大胆放手,让学生根据自己的学习经验进行汇报,充分发挥学生的想象力,同时培养学生的创新意识。
三、注重数学思想方法的渗透,让所积累的经验为新知服务。
“授人以鱼,不如授人以渔”,这句话不错,教给他们知识,不如教给他们学习的方法。所以,在“平行四边形的面积”这一课的教学中,我不仅仅是让学生掌握平行四边形面积的计算公式,更重要的是让学生在活动中积累基本的活动经验,让他们在经验的积累中感受、理解、掌握数学中“转化”的思想方法,为今后学习其他图形的面积奠定基础。如在学生上台汇报:将平行四边形转变成长方形时,我适时讲解“像他们这样,把没学过的知识变成已学过的知识,从而解决问题,这就是数学中的“转化”思想。并提醒学生,在今后的学习中,我们也可以像他们这样,利用转化的的思想,将没学过的知识转化为已学过的知识来解决。
四、巧设课堂练习,培养学生数学思考的能力。
学生的思考能力是有差异的,所以我在整体把握教学内容的基础上,设计了梯度练习。首先是基础性的练习,让学生利用所探究出来的公式求平行四边形的面积;接着是提高性的练习,既设计多余信息的练习,让学生的思考力得以生长。当学生看懂了平行四边形可以转化为长方形来思考,真正理解了“底乘高的原理时,我又创设一个反例练习,既在黑板上将一个活动的长方形框架拉成平行四边形,然后问学生:“长方形的面积和平行四边形的面积相等吗?”这时,学生受思维定势的影响,都一致认为“相等”。当我利用课件展示两个图形的平面图时,一部分学生根据已有的学习经验(即将平行四边形右边斜出的部分剪下,平移到左边拼成长方形,)而改变了意见。此时,我质疑学生:“为什么刚才把平行四边形转化成长方形,它们的面积相等。而现在把长方形的框架拉成平行四边形时,它们的面积却不相等呢?”然后再利用活动框架让学生直观地了解到:当我们把长方形框架拉成拉成平行四边形时,它的面积会越来越小,是因为平行四边形的高越来越短的关系。从而让学生理解“等积变形”的转化与“变与不变”之间的区别。最后我再通过两题判断题让学生充分理解,平行四边形的面积不仅与它的高有着密切关系,同时也与它的底有着密切的关系。
五、遗憾与心得
教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾。
(1)由于是送课下乡的活动,我对该班学生的学习情况了解不够。因而在学生的动手探究时,多数学生对学习记录卡的填写不熟悉。由此在这个环节花掉的时间超过我预设时间近十分钟。然而让我欣喜的是在学生交流汇报的环节,一部分学生的思维活跃,语言表达能力非常好,从而凸显出本课设计的精彩之处,以致于让听课老师不会因超时而不耐烦。同时也让我意识到,在今后的教学中,应对学习卡的设计慎之又慎。
(2)阶段性小结的重要性。适当的课堂小结可以帮助学生理清知识结构,掌握内在联系,对促进学生构建自己的知识体系,有很大的帮助。因此,在学生获取一个新的知识点后,教师应及时做个阶段性的小结。
幸运的我,相信在陈宏瑜名师的指导下,在我们团队的磨课中,会不断地改进,不断地进步,不断地创新,我们的课堂也将会更加精彩。
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上;学生的数学学习内容应该是现实的、有趣的、富有挑战性的;动手实践、自主探索与合作交流,是学生学习的重要方式。这节课中,我在学生想想、剪剪、拼拼等活动中,最大限度地调动学生多种感观,让他们的手、眼、脑等都参与到学习活动中去。让学生有理有据地思维,即达到了“平行四边形面积”的主动构建。调动了学生已有的知识和经验,去解决问题,“创造”知识。使他们将接受知识的过程转变为能动参与过程,成为真正的探索者、发现者、创造者。有利于学生创新意识与实践能力的培养。
主要体现在以下几个方面:
1、本节课充分的利用教材
引导学生去发现教材中隐藏的数学知识,发挥了教材在教学中的主题作用。
2、从生活情境出发,为学生创设探究学习的情景。
在教学中,教师首先让学生观察街区图。让学生看到各种图形都是来源于生活实际,也体会到了计算它们的面积的用处,这就使学生对学平行四边形面积计算的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
小学数学内容来源于生活实际。只有植根于生活世界并为生活世界服务的课堂,才是具有强盛生命力的课堂。新课程强调把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。
3、重视学生的自主探索和合作学习
在教学中,通过先让学生利用数方格填表格的方法,初步了解给出的平行四边形的面积和长方形的面积是相等的,接着引导学生观察、发现表格中的秘密,猜想出平行四边形的面积等于底乘高,最后学生小组合作通过动手操作把平行四边形转变成长方形,进一步验证了学生的猜想。在这节课中教师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的.思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……这样才能迸发出学生创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
“学习任何知识最佳的途径都是由学生自己去发现,因为这种发现才是最深刻、也最容易掌握其中内在规律性质与联系”。经过学生动手、动脑、交流,把求平行四边形面积这一探索过程充分展示出来。不仅深化了对公式的理解而且渗透了转化和变换的数学思想,培养了学生操作能力和分析概括的能力,发展了学生的空间观念。
4、充分利用教学资源,自制课件,发挥多媒体辅助教学功能。
本节课还充分发挥了计算机辅助教学的功能,直观、形象、动态地展现知识的形成过程,有效地突破教学难点,帮助学生深刻理解新知,建立清晰表象,提高教学效果。
总之,本节课学生亲身经历了探索的过程,在头脑中建构了新的数学模型,使学生体验到成功的喜悦。教学成功的关键在于关注了学生的学习过程,不是让学生机械地重复历史中的“原始创造”,而是让他们根据自己的体验并用自己的思维方式重新去创造出有关的数学知识;不是盲目接受和被动记忆课本或教师传授的知识,而是让学生主动运用已有的知识和经验进行自我探索,自我建构。创设了一个有利于学生生动活泼、主动发展的教育氛围,教师要真正成为教学的组织者、引导者和合作者。
学生的自主探究是小学数学教学研究的一个热点,有许多问题需要我们深入研究。例如,什么是数学教学中真正的探究活动?如何提高探究过程的有效性?带着这些问题,我设计了“平行四边形的面积”一课,力求体现《数学课程标准》的一些新的数学理念,在教师的适当引导下,让学生积极主动参与知识形成的过程,培养学生动手操作、大胆猜测、合作探究、概括延伸的能力,提高探究活动的效率。
明确目的性,是科学的探究活动的一个基本特征。因此,把学习引向重、难点,或学生疑惑的地方,让学生有效地参与,是培养他们课堂自主探究的前提。在新课伊始,我设计了“玩一玩”的活动,通过“玩”激发学生兴趣,将新旧知识紧密结合在一起,引导学生发现问题,从而自然引入到面积的探究中。经过长期训练,学生就逐步掌握了学习的方法,消除了对学习的畏难、厌烦情绪,使他们带着良好的心态投入学习活动,学生在课堂中充分显示自己的才华。
本节课中,我特别重视学生直觉思维的培养。因为猜想是直觉思维的一部分,教学中我在两个环节中均注意设置猜一猜:一是平行四边形面积的大小跟哪些条件有关;二是猜一猜平行四边形的面积跟底和高有什么关系。鼓励学生对问题的答案作出合理的猜测,有助于培养学生的创新意识,使他们思维更活跃、更发散。进而为学生进一步学习创设良好的学习氛围,让学生积极参与到知识的形成过程中,让学生经历猜想、操作、验证、发现等环节。通过独立思考、合作交流等形式,了解平行四边形面积公式的来龙去脉,真正体现了主体教育的原则。
本节课我力求通过学生的自主学习、合作学习探求知识的形成过程,教师只是一个合作者、引导者、促进者。例如,平行四边形面积公式的推导,是学生利用手中的平行四边形纸片,利用手中的工具,采用喜欢的`方式去探究,验证自己的猜想。并通过生生、师生的交流互动,逐步归纳、总结出平行四边形面积公式。
反思本节课的教学,我觉得要提高数学探究活动的有效性,就要做到:1.让学生的探究有明确的目的性;2.为学生创设良好的学习氛围;3.教师的有效指导;4.生生、师生的互动生成。
本节课我以学生已有的知识经验为基点,以学生的自主探究学习和多向思维发展为主线,以分层训练为手段,让学生经历了数学化探索和知识回归应用的过程,通过课后的深思,我认为本课教学力求体现以下三点:
1.目标定位准确,教学思路清晰。
本节课我的目标意识较强,以“创设情境——自主探究——操作验证——实践应用”为主线,探究过程细化为猜想、操作、推导和深化四个层次,教学思路清晰,重点难点突出,适时充分地创造条件,引导学生在参与探究知识形成的过程中想问题、寻方法、得结论,从而培养了学生的操作、观察、分析的能力和探究过程中用不同方法解决问题的能力。
2.模型建构合理,方法渗透有效。
“转化”是数学学习和研究的一种重要思想方法,平行四边形面积公式的推导所蕴含的转化思想,对学生今后推导三角形、梯形面积公式具有重要意义。整个教学过程中我以学生为主体,鼓励学生自主探究,大胆质疑,不仅启发学生把研究的图形转化为已经会计算的面积的图形,渗透转化的数学思想方法,而且着重让学生通过画、剪、拼、摆等动手操作的活动来让学生亲历自主探究的过程。同时引导学生去探究所研究的图形与转化后的图形之间存在的等量关系,从而导出面积计算方法,重视引领学生探索平行四边形面积计算公式背后所隐含的知识结构的提炼,从而让学生更好地建立起平行四边形面积计算公式这一数学模型。
3.练习设计巧妙,知识应用深化。
本节课练习的设计目标明确、形式多样、层层递进,第一题的基础练习从最基本的已知平行四边形的底和高直接计算面积开始,熟练运用计算公式计算。第二题要求学生认真审题,让学生发现多余条件的情况下需要选择相对应的底和高计算面积,进一步感悟底和高对应关系,并发挥此题的作用,进行逆向应用,由面积和高求出底,由面积和底求出高。第三题是开放练习题,让学生结合平行线间距离处处相等发现等底等高平行四边形面积相等;此题开放度广,为学生今后逻辑思维的发展和解题能力的提高打下了良好的基础。第四题是求出方格纸格中的平行四边形和三角形面积,在数三角形面积时,初步渗透它的面积计算及其与平行四边形的关系,为三角形面积公式的推理埋下伏笔,同时回归学生原有的认知起点,通过用数格子方法弥补本课教学上一点缺失,以达到培养学生的多向思维能力的目的。
综上所述,整节课的教学力求体现“在探究活动中感悟——在操作活动中合作交流——在反馈发现中总结规律——在灵活运用中拓展延伸”这一基本课堂教学流程。学生在丰富的活动探究中体验到知识的产生、发展的过程,不仅增长了知识、提高了能力,而且获得了深层次的情感体验。
新课标要求我们教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。所以,在《平行四边形的面积》一课的教学中,我让学生动手实践,自主探究,让他们经历了知识的形成过程。而本节课大部分时间都是学生活动,例如:学生借助已有的经验和方格图,让他们初步感知平行四边形的面积可能与它的底和其对应的高有关,再通过剪、拼等活动,让学生在操作、观察、比较中,概括平行四边形的面积的计算方法,在此过程中教师还应注意数学思想方法的渗透,即“转化”思想的渗透,让学生学会用以前的知识来解决现有的问题(例如放手让学生将自己准备的平行四边形,通过剪拼转化成长方形,这样学生有非常直观的“转化”感受。)此时,教师可以这样对学生说:“探索图形的面积公式,我们可以把没学过的图形转化为已经学的图形来研究。”这样一来,学生比较容易想到将新的、陌生的问题转化成相对熟悉的问题。从而促进学生主动探索解决问题的方法,体会解决问题的策略,提高学生的数学应用意识。
除此之外,在课堂练习设计分了3个部分:
1、基础练习
2、提升练习
3、思维训练,
题目以多种形式呈现,排列遵循由易到难的原则,层层深入,吸引了学生的注意力,使各个层次的学生都有面对挑战的信心,激发了学生兴趣、引发了思考、发展了思维。
《平行四边形面积》的教学反思
“平形四边形的面积”是学生第一次用转化的思想方法探索面积计算公式,在探究过程中获得的数学思想、活动经验对学生下一步探索三角形、梯形和圆面积公式具有很强的借鉴作用,因此转化的方法和转化思想的渗透无疑是本课教学的重要目标。
一、注重数学专业思想方法的渗透。
我在这节课中,先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,有利于有能力的同学向转化的方法靠拢。在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。
二、注重学生数学思维的'发展。
在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。
三、注重了师生互动、生生互动。
在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。例如:当学生展示完自己的方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的这些问题,不断地把课堂引上了师生互动,生生互动的高潮。整个教育界现在都在提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答
四、练习的设计,由浅入深,环环相扣。
一是让学生进行两个平行四边形面积的计算,并让学生通过画一画加深学生对数学转化思想的印象。
二是让学生计算文字描述的平行四边形的面积。然后让学生画出平行四边形,展示不同的平行四边形,得出等底等高的平行四边形面积都相等。
整堂课,都让学生在思考、交流、思维碰撞中渡过,动静结合,有些课堂发言很积极的同学并不一定数学成绩很好,有些数学课上很少发言的学生却有很好的数学成绩。课堂需要学生积极发言,然而更重要是静静地积极地思考。
《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。由此我设计的学习目标是1、通过观察、动手操作、比较、讨论思考,探索并掌握平行四边形面积计算公式,能正确应用公式计算平行四边形的面积。2、能灵活、准确地应用平行四边形的面积计算公式解决简单实际问题。3、在探索平行四边形面积公式的过程中,初步感受转化的数学思想。我主要从我的教学过程中反思这节课成功的经验及失败的教训。
一、 导入示标
本节课我以复习长方形的面积导入,通过拉一拉把长方形变成平行四边形,学生发现不会求这类图形的面积,从而激起学生的好奇心,提高学生的兴趣,本节课有了一个好的开始,但是接下来我没有向学生明确说明今天的学习目标,虽然有了好奇心,但不太清楚这节课主要做什么,是我考虑不周,在今后的教学中注意这个问题,目标就是学习的方向,干任何事首先都要明确目标。
二、 学习过程
我设计的学习过程让学生提出猜想—验证猜想(小组讨论)--推导出结论—练习—总结—布置作业,但我在实施这个流程时发现几个问题,第一、我让学生在预习再猜想学生很多答案都是固定的,有的直接照书本上说。没有达到预期的效果,第二讲课的速度跟出示不一致,有时候讲的多但出示,有时候出示但没有讲那一方面的知识。第三、讲课中语言过于啰嗦、重复。第四、每个环节与每个环节之间的过渡语说的不太自然,太生硬有的甚至没有过渡语,直接跳到下一个环节。第五、练习题没有根据学生发展顺序及知识的难易循序渐进,先出示的问题比较难,后出示的问题相对容易。学生在回答第一个问题的时候有些措手不及。通过分析出现的这些问题原因,我觉得最重要的是课前没有充分备课,没有充分备学生。没有对这节课的教案熟悉,与思路都是分家的,出示与讲课的速度不统一,导致效果不一致。经过本节课的教学我觉得在上每一节课前不仅对每一个知识点熟记于心,更应该对如何向学生展现这是知识点熟记于心。
三、 总结评价
在整节课的教学中对学生的'评价语少,鼓励性语言更少,小孩子回答问题后都需要老师的肯定,这样会大大提高学生下一次回答的勇气。
四、 我的遗憾
课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。