培训啦 考试资料 > 教案

从算式到方程教案(精品17篇)

教培参考

教育培训行业知识型媒体

发布时间: 2024年11月26日 02:42

从算式到方程教案(1)

能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列 出方程.

理解方程、一元一次方程的定义及解的概念.

掌握检验某个数值是不是方程的解的方法.

阅读教材P78~80,思考下列问题.

什么是方程、一元一次方程及它们的 解?怎样列方程?

知识探究

含有未知数的等式叫方程.只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程.

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.

自学反馈

根据下面实际问题中的数量关系,设未知数列出方程:

用一根长为2 4 cm的铁丝围成一个正方形,正方形的边长为多少?

解:设正方形的边长为` cm,列方程得:4`

某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?

解:设这个学校的学生数为`,则女生数为52%`,男生数为52%`-80,依 题意得方程:52%`+52%`-80=`.

练习本每本元,小明拿了10元钱买了若干本,还找回元.问:小明买了几本练习本?

解:设小明买了`本,列方程得:`

长方形的周长为24 cm,长比宽多2 cm,求长和宽分别是多少.

解:设长为`cm,则宽为(`-2)cm,依题意得方程:2(`+`-2)

先设未知数,再找相等关系,列方程.[来源:学+科+网Z+`+`+K]

活动1小组讨论

例1判断下列是不是一元一次方程,是打“√”,不是打“×”.

①`+3=4;(√)

②-2`+3=1;(√)

③2`+13=6-y;(×)

④1`=6;(×)

⑤2`-8>-10;(×)

⑥3+4`=7`.(√)

例2检验2和-3是否为方程`-52-1=`-2的解.

解:-3是,2不是.

带入方程中左右两边相等的值就是方程的解.

例3设未知数列出方程:

(1)用一根长为100 cm的铁丝围成一个正方形,正方形的边长为多少?

(2)长方形的周长为40 cm,长比宽 多3 cm,求长和宽分别是多少.

(3)某校女生人数占全体学生数的55%,比男生多50人,这个学校有多少学生?

(4)A、B两地相距200千米,一辆小车从A地开往B地,3小时后离B地还有20千米,求小车的平均速度.

解:略.

设未知数,找等量关系,用方程表示简单实际问题中的相等关系.

活动2跟踪训练

下列方程的解为`=2的是(C)

`=2

`-1=4-2`

(`-1)=2`-2

`-4=5`-2

在2+1=3,4+`=1,y2-2y=3`,`2-2`+1中,一元一次方程有(A)

个个个个

老师要求把一篇有2 000字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出方程的解)

解:设小华要`分钟完成,由题意,得

50`+700=2 000,

`

活动3课堂小结

方程及一元一次方程的定义.

如何列方程,什么是方程的解.

等式的性质

了解等式的两条性质.

会用等式的性质解简单的一元一次方程.

阅读教材P81~82,思考下列问题.

等式的性质有哪几条?用字母怎样表示?字母代表什么?

解方程的依据是什么?

知识探究

如果a=b,那么a±c=b±c(字母a、b、c可以表示具体的数,也可以表示一个式子).

如果a=b,那么

如果a=b(c≠0),那么

自学反馈

已知a=b,请用“=”或“≠”填空:

(1)3a=3b;(2)a4=b4;(3)

利用等式的性质解下列方程:

(1)`+7=26;

(2)- 5`=20;

(3)-2(`+1)

解:(1)`(2)`(3)`[来源:学_科_网]

注意用等式的性质对方程进行逐步变形,最终可变形为“`=a”的形式.

活动1小组讨论

例利用等式的性质解下列方程并检 验:

(1)`-9 =6;

(2)`=10;

(3)3-13`=2;

(4)-2`+1=0;

(5)4(`+1)

解:(1)`(2)`(3)`(4)`(5)`

运用等式的性质解方程不能漏掉某一边或某一项.

活动2跟踪训练

利用等式的性质解下列方程并检验:

(1)`+5=8;[来源:学|科|网Z|`|`|K]

(2)-`-1=0;[来源:学+科+网Z+`+`+K]

(3)-2-14`=2;

(4)6`

解:(1)`(2)`(3)(4)`=13 .

活动3课堂小 结

等式有哪些性质?

在用等式的性质解方程时要注意什么?

会从实际问题中抽象出数学模型,会用一元一次方程解决电话计费等有关方案决策的问题.

阅读教材P104~105探究3的内容,思考题中所提出的问题.

知识探究

方案决策问题解题的基本方法是求得每种方案的结果,再结合结果做出判断.[来源:学科网]

自学反馈

某市乘公交车(非空调)每次需投币元或者购买IC卡,每次刷卡扣款元,但办理IC卡时需付工本费15元.问需乘坐公交车多少次时两种收费方式的收费一 样?当超过这个次数后哪种收费方 式较合算?[来源:Z``]

解:100次,购买IC卡合算.

活动1小组讨论

例(教 材P104探究3)电话计费问题

下表中有两种移动电话计费方式.

月使用

费/元 主叫限定

时间/min 主叫超时

费/(元/min) 被叫

方式一 58 150 免费

方式二 88 350 免费

考虑下列问题:

(1)设一个月 用移动电话主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费;

(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.

活动2跟踪训练

某厂招聘运输工,有两种方法来结算工资,一种是每月基本工资300元,每运1吨货给15元;另一种是没有基本工资,每运1吨货给20元.问每月运多少吨货时两种结算方法给的工资一样多?如果某工人每月可运货70吨,那么用哪种结算方法可多拿工资?

解:60吨,用第二种结算方法可多拿工 资.

活动3课堂小结

电话计费等有关的方案决策问题.

从算式到方程教案(2)

【学习目标】

1、理解什么是一元一次方程。

2、理 解什么是方程的解及解方程,学会检验一个数值是不是方程的 解的方法。

【重点难点】能验证一个数是否是一个方程 的解。

【导学指导】

一、温故知新

1:前面学 过有关方程的一些 知识,同学们能说出什么是方程吗?

答: 叫做方程。

2: 判断下列是不是 方程,是打“√”,不是打“×”:

① ;( ) ②3+4=7;( )

③ ;( )④ ;( )

⑤ ;( ) ⑥ ;( )

二、自主探究

一元一次方程的概念

观察下面方程的特点

(1)4 =24;(2)1700+150=2450

(3)`-(`)=80

小结:象上面方程,它们都含有 个未知数(元),未知数的次数都是 ,这样的方程叫做一元一次方程。

(即方程的一边或两边含有未知数)

方程的解

如何求出使方程左右两边相等的未知数的值?

如方程 =4中, =?

方程 中的 呢?

请用小学所学过的逆运算尝试解决上面的问题。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

例 检验2和-3是否为方程 的解。

解:当`=2时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=2 方程的解(填是或不是)

当`= 时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=3 方程的解(填是或不是)

【课堂练习】

判断下列是不是一元一次方程,是打“√”,不是打“×”:

① =4;( ) ② ;( )

③ ; ( ) ④ ; ( )

⑤ ; ( ) ⑥3+4 =7 ;( )

检验3和-1是否为方程 的解。

`=1是下列方程( )的解:

(A) , ( B) ,

(C) ), ( D)

4 、已知方程 是关于`的一元一次方程,则a=。

【要点归纳】:

这节课我们学习了什么内容?

什么是方程的解?如何检验一个数是否是方程的解?

【拓展训练】:

检验2和 是否为方程 的解。

老师要求把一篇有20XX字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出 方程的解)

【总结反思】:

从算式到方程教案(3)

目标 使学生初步掌握一元一次方程应用题的设未知数和列方程; 培养学生观察能力,提高他们分析问题和解决问题的能力; 使学生初步养成正确思考问题的良好习惯. 教

重难点

重点:从学生原有的认知结构提出问题在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

难点:师生共同分析、研究利用等式的性质解一元一次方程和根据实际问题设未知数和列方程。基本教法 探究式教学法、合作交流法、讲授法、提问法。

教具学具准备

无 教学流程 一、导入新课 1、小明的年龄是12岁,王老师的年龄是小明年龄的4倍少2,王老师的年龄是____岁?如果设小明的年龄是x岁,那么王老师的年龄是_____岁? 2、一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少两梨,请问同学知道否,几个老头几个梨? 二、讲授新课 1、什么叫做等式?

答:表示相等关系的式子叫做等式。

形式:把相等的两个数(或字母表示的数)用等号连接起来。2、等式有何性质?

等式的性质1:等式两边加上(或减去)同一个数(或式子),结果仍相等。

如果a=b,那么a±c=b±c。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果a=b,那么ac=bc;

如果a=b(c≠0),那么

3、什么叫做方程?

答:含有未知数的等式叫做方程。

例:4x=24

150x+1700=2450

()x=80

4、什么叫做一元一次方程?

从算式到方程教案(4)

【教学习目标】

一、知识与技能

1、通过处理 实际问题,让学生体验从算术方法到代数方法是一种进步。

2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。

3、培养学生获取信息,分析问题,处理问题的能力。

二、过程与方法

通过实际问题,感受数学与生活的联系。

三、情感态度与价值观

培养学生热爱数学热爱生活的乐观人生态度。

【教学方法】

探索式教学法

教师准备教学用课件。

【教学过程】

一、新课引入

教师提出教科书第79页的问题,同时出现下图:

问题2:你会用算术方法求出王家庄到翠湖的距离吗?

问题3:能否用方程的知识来解决这个问题呢?

可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)

当学生列出不同算式时,应让他们说明每个式子的含义)

教师可以在学生回答的 基础上做回顾小结:

1、问题涉及的三个基本物理量及其关系;

2、从知的信息中可以求出汽车的速度;

3、从路程的角度可以列出不同的算式 :

如果设王家庄到翠湖的路程为x千米,那么王家庄距青山 千米,王家庄距秀水 千米.

问题1:题目中的“汽车匀速行驶”是什么意思?

问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

问题3:根据车速相等,你能列出方程吗?

教师引导学生设未知数,并用含未知数的字母表示有关的数量

教师引导学生寻找相等关系,列出方程.

教师根据学生的回答情况进行分析,如:

依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

依据“王家庄至青山路段的车速=青山至秀水路段的车速”

可列方程:

给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

含有未知数的等式叫方程.

归纳列方程解决实际问题的两个步骤:



从算式到方程教案(5)

教学目标:

通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.

初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.

培养学生获取信息、分析问题、处理问题的能力.

教学重难点: 从实际问题中寻找相等关系.

教学过程:

一、情境引入

提出课本P78的问题,可用多媒体演示题目描述的行驶情境.

理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?

能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.

提出问题,如果用字母x表示A、B两地的路程,根据题意会得到一个什么样的式子?

二、学习新知

引导学生把题中的数量用表格形式反映题意:

路程(km) 速度(km/h) 时间(h) 卡车 x 60 客车 x 70

学生回顾方程的概念,探讨、列出方程,并说出列得方程的依据.

讨论列出方程表示的意义,并对比算术方法,体会列方程解决问题与列算式解决问题的优越性.

反思:这个问题中除了A、B两地的路程是一个未知量,还有没有其它的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.

将题中的已知量和未知量用表格列出:

路程(km) 速度(km/h) 时间(h) 卡车 60 y 客车 70 y-1

探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.

总结以上列出两个含不同未知数x、y的方程的方法:①以路程为未知数,则根据两车行驶时间的关系列方程.②以行驶时间为未知数,则从两车行驶路程的关系列方程.

比较列算式和列方程两种方法的特点:阅读课本

举一反三:分别列算式和设未知数列方程解决下列问题:

(1)某数与它的的和是8,求这个数;

(2)班上有女生32人,比男生多,求男生人数;

(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?

三、初步应用

例1:课本P79例

例2(补充):根据下列条件,列出关于x的方程:

(1)x与18的和等于54;

(2)27与x的差的一半等于x的4倍.

列出方程后教师说明:“4x”表示4与x的积,当乘数中有字母时,通常省略乘号“×”,并把数字乘数写在字母乘数的前面.

练习(补充)

(1)列式表示:

① 比a小9的数; ② x的2倍与3的和;

③ 5与y的差的一半; ④ a与b的7倍的和.

(2)根据下列条件,列出关于x的方程:

①12与x的差等于x的2倍;

②x的三分之一与5的和等于

四、课时小结

本节课我们学了什么知识?

你有什么收获?

五、课堂作业

小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入.

第2课时一元一次方程

教学目标:

理解一元一次方程、方程的解等概念.

掌握检验某个值是不是方程的解的方法.

培养学生根据问题寻找相等关系、根据相等关系列出方程的能力.

体验用估算方法寻求方程的解的过程,培养学生求实的态度.

教学重点:寻找相等关系,列出方程.

教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.

教学过程:

一、情境引入

问题:小雨、小思的年龄和是小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?

如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?(25-x,2x-8)

由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8,这样就得到了一个方程.

二、自主尝试

尝试:让学生尝试解答课本P79的例

交流:

在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.

教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.

讨论:

问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?

问题2:在第(3)题中,你还能设其它的未知数为x吗?

建立概念

(1)概念的建立:

在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.

“一元”:一个未知数;“一次”:未知数的指数是一次.

判断下列方程是不是一元一次方程:

①23-x=-7;②2a-b=3;

从算式到方程教案(6)

【教学习目标】

一、知识与技能

1、通过处理 实际问题,让学生体验从算术方法到代数方法是一种进步。

2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。

3、培养学生获取信息,分析问题,处理问题的能力。

二、过程与方法

通过实际问题,感受数学与生活的联系。

三、情感态度与价值观

培养学生热爱数学热爱生活的乐观人生态度。

【教学方法】

探索式教学法

教师准备教学用课件。

【教学过程】

一、新课引入

教师提出教科书第79页的问题,同时出现下图:

问题2:你会用算术方法求出王家庄到翠湖的距离吗?

问题3:能否用方程的知识来解决这个问题呢?

可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)

当学生列出不同算式时,应让他们说明每个式子的含义)

教师可以在学生回答的 基础上做回顾小结:

1、问题涉及的三个基本物理量及其关系;

2、从知的信息中可以求出汽车的速度;

3、从路程的角度可以列出不同的算式 :

如果设王家庄到翠湖的路程为x千米,那么王家庄距青山 千米,王家庄距秀水 千米.

问题1:题目中的“汽车匀速行驶”是什么意思?

问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

问题3:根据车速相等,你能列出方程吗?

教师引导学生设未知数,并用含未知数的字母表示有关的数量

教师引导学生寻找相等关系,列出方程.

教师根据学生的回答情况进行分析,如:

依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

依据“王家庄至青山路段的车速=青山至秀水路段的车速”

可列方程:

给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

含有未知数的等式叫方程.

归纳列方程解决实际问题的两个步骤:

初一数学《从算式到方程》教案范文相关

从算式到方程教案(7)

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;

2、了解什么是方程,什么是一元一次方程及什么是方程的解。

1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法

2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。建立一元一次方程的概念。问题与情境 师生活动 设计意图

一、创设情境,展示问题:

问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2: 章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名 时间 王家庄 10:00 青山 13:00 秀水 15:00 教师展示问题,要求用算术解法,让学生充分发表意见。算术方法:(124+1)÷25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。问题1的算术解法:(50+70)÷2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。示意图有助于分析问题。

二、寻找关系,列出方程

1、对于问题1,如果设王家庄到翠湖的路程是`千米,则: 路程 时间 速度 王家庄-青山 王家庄-秀水 根据汽车匀速前进,可知各路段汽车速度相等,列方程。

2、比一比:列算式与列方程有什么不同?哪一个更简便?

3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。学生思考回答:

1、王家庄-青山(`—50)千米,王家庄-秀水(`+70)千米。

2、汽车以每小时(`-50)÷3千米的速度从王家庄到青山;以每小时(`+70)÷5千米的速度从王家庄到秀水。让学生体会:用算术方法解题时,列出的算式只能用已知数,而列方程解题时,方程中既含有已知数,又含有用字母表示的未知数。

三、定义方程,建立模型

1、定义:(板书)含有未知数的等式叫做方程。

练习一:判断下列式子是不是方程,是的打“√”,不是的打“` ”.

(1)1+2=3 ( ) (4) ( ) (2) 1+2`=4 ( ) (5) `+y=2 ( ) (3) `+1-3 ( ) (6) `2-1=0 ( )

练习二:根据下列问题,设未知数并列出方程。

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为` cm。那么依题意得到方程: (2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的修检时间2450小时?解:经过`月这台计算机的使用时间达到规定的修检时间2450小时,那么依题意得到方程: (3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?解:设这个学校的学生为`,那么女生数为 ,男生数为 . 由此依题意得到方程:________________。[议一议]:上面的四个方程有什么共同点? 2、定义:只含有一个未知数(元`),未知数的指数是1次,这样的方程叫做一元一次方程。

练习三:判断下列方程哪些是一元一次方程?(1) (2) (3) (4) (5)

3、方程的解:再看刚才列出的方程:4`=24,你能观察出当`=?时,4`的值正好等于24吗。学生回答后总结方程的解和解方程的概念。

4、归纳分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法。(学生举例并完成练习一) 师生合作,根据数量关系列出方程。

教师结合练习给出方程、一元一次方程的定义。(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右两边相等的未知数的值就是这个方程的解. 教师引导学生对上面的分析过程进行思考,将实际问题转化为数学问题的一般过程。

学生举出方程的例子。(学生独立思考、互相讨论,先分析出等量关系,再根据所设未知数列出方程) 判断哪些是一元一次方程。学生单独计算,并填表。学生得出解决实际问题的模型。

四、训练巩固,课堂小结

1、根据下列问题,设未数列方程,并指出是不是一元一次方程。(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?(2)甲种铅笔每枝元,乙种铅笔每枝元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?(3)一个梯形的下底比上底多2㎝,高是5㎝,面积是40㎝2,求上底。

2、小结 本节课你学到了哪些知识?哪些方法?

五、布置作业A、 必做 82页,第1、2、3、题; B、 拓展阿凡提经过了三个城市,第一个城市向他征收的税是他所有钱财的一半又三分之一,第二个城市向他征收的税是他剩余钱财的一半又三分之一,到第三个城市里,又向他征收他经过两次交税后所剩余钱财的一半又三分之一,当他回到家的时候,他剩下了11个金币,问阿凡提原来有多少个金币? C、课堂评价

1、 本节课的主要知识点是:

2、 你对列方程这节课的感受是:

3、 这节课我的困惑是: 解:(1) 设跑`周. 列方程400`=3000

4、 (2)设甲种铅笔买了`枝,乙种铅笔买了(20-`)枝.列方程 `+(20-`)=9 (3)设上底为` cm,下底为(`+2)列方程 学生自己探索,独立完成,集体订正。学生课后完成,并写学习心得。

从算式到方程教案(8)

一、创设情境,展示问题。

问题1:

世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2: 章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名 时间 王家庄 10:00 青山 13:00 秀水 15:00 教师展示问题,要求用算术解法,让学生充分发表意见。

算术方法:(124+1)÷25=5(吨)方程方法:可设大象重为`吨,则124=25`—1 学生独立思考,小组交流,代表发言,解释说明。

问题1的算术解法:

(50+70)÷2=60(千米/时) 605—70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。示意图有助于分析问题。

二、寻找关系,列出方程。

1、对于问题1,如果设王家庄到翠湖的路程是`千米,则: 路程 时间 速度 王家庄—青山 王家庄—秀水 根据汽车匀速前进,可知各路段汽车速度相等,列方程。

2、比一比:列算式与列方程有什么不同?哪一个更简便?

3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。

学生思考回答:

1、王家庄—青山(`—50)千米,王家庄—秀水(`+70)千米。

2、汽车以每小时(`—50)÷3千米的速度从王家庄到青山;以每小时(`+70)÷5千米的速度从王家庄到秀水。让学生体会:用算术方法解题时,列出的算式只能用已知数,而列方程解题时,方程中既含有已知数,又含有用字母表示的未知数。

三、定义方程,建立模型。

1、定义:(板书)含有未知数的等式叫做方程。

练习一:判断下列式子是不是方程,是的打“√”,不是的打“` ”。

(1)1+2=3 ( ) (2) 1+2`=4 ( ) (3) `+y=2 ( ) (1) `+1—3 ( ) (2) `2—1=0 ( )

练习二:根据下列问题,设未知数并列出方程。

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为` cm。那么依题意得到方程:_________。

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的修检时间2450小时?解:经过`月这台计算机的使用时间达到规定的修检时间2450小时,那么依题意得到方程:_________。

(3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?解:设这个学校的学生为`,那么女生数为 ,男生数为。由此依题意得到方程:________________。[议一议]:上面的四个方程有什么共同点? 2、定义:只含有一个未知数(元`),未知数的指数是1次,这样的方程叫做一元一次方程。

3、方程的解:再看刚才列出的方程:4`=24,你能观察出当`=?时,4`的值正好等于24吗。学生回答后总结方程的解和解方程的概念。

4、归纳分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法。

(学生举例并完成练习一) 师生合作,根据数量关系列出方程。

教师结合练习给出方程、一元一次方程的定义。

(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右两边相等的未知数的值就是这个方程的解。教师引导学生对上面的分析过程进行思考,将实际问题转化为数学问题的一般过程。

学生举出方程的例子。

(学生独立思考、互相讨论,先分析出等量关系,再根据所设未知数列出方程) 判断哪些是一元一次方程。学生单独计算,并填表。学生得出解决实际问题的模型。

四、训练巩固,课堂小结。

1、根据下列问题,设未数列方程,并指出是不是一元一次方程。

(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?

(2)甲种铅笔每枝0。3元,乙种铅笔每枝0。6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?

(3)一个梯形的下底比上底多2㎝,高是5㎝,面积是40㎝2,求上底。

2、小结。

本节课你学到了哪些知识?哪些方法?

五、布置作业。

A、必做 82页,第1、2、3、题;

B、 拓展阿凡提经过了三个城市,第一个城市向他征收的税是他所有钱财的一半又三分之一,第二个城市向他征收的税是他剩余钱财的一半又三分之一,到第三个城市里,又向他征收他经过两次交税后所剩余钱财的一半又三分之一,当他回到家的时候,他剩下了11个金币,问阿凡提原来有多少个金币?

C、课堂评价。

1、本节课的主要知识点是:

2、你对列方程这节课的感受是:3、这节课我的困惑是:

(1) 设跑`周。列方程400`=3000

(2)设甲种铅笔买了`枝,乙种铅笔买了(20—`)枝。列方程 0。3`+0。6(20—`)=9 (3)设上底为` cm,下底为(`+2)cm。列方程 学生自己探索,独立完成,集体订正。学生课后完成,并写学习心得。

从算式到方程教案(9)

能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列 出方程.

理解方程、一元一次方程的定义及解的概念.

掌握检验某个数值是不是方程的解的方法.

阅读教材P78~80,思考下列问题.

什么是方程、一元一次方程及它们的 解?怎样列方程?

知识探究

含有未知数的等式叫方程.只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程.

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.

自学反馈

根据下面实际问题中的数量关系,设未知数列出方程:

用一根长为2 4 cm的铁丝围成一个正方形,正方形的边长为多少?

解:设正方形的边长为` cm,列方程得:4`

某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?

解:设这个学校的学生数为`,则女生数为52%`,男生数为52%`-80,依 题意得方程:52%`+52%`-80=`.

练习本每本元,小明拿了10元钱买了若干本,还找回元.问:小明买了几本练习本?

解:设小明买了`本,列方程得:`

长方形的周长为24 cm,长比宽多2 cm,求长和宽分别是多少.

解:设长为`cm,则宽为(`-2)cm,依题意得方程:2(`+`-2)

先设未知数,再找相等关系,列方程.[来源:学+科+网Z+`+`+K]

活动1小组讨论

例1判断下列是不是一元一次方程,是打“√”,不是打“×”.

①`+3=4;(√)

②-2`+3=1;(√)

③2`+13=6-y;(×)

④1`=6;(×)

⑤2`-8>-10;(×)

⑥3+4`=7`.(√)

例2检验2和-3是否为方程`-52-1=`-2的解.

解:-3是,2不是.

带入方程中左右两边相等的值就是方程的解.

例3设未知数列出方程:

(1)用一根长为100 cm的铁丝围成一个正方形,正方形的边长为多少?

(2)长方形的周长为40 cm,长比宽 多3 cm,求长和宽分别是多少.

(3)某校女生人数占全体学生数的55%,比男生多50人,这个学校有多少学生?

(4)A、B两地相距200千米,一辆小车从A地开往B地,3小时后离B地还有20千米,求小车的平均速度.

解:略.

设未知数,找等量关系,用方程表示简单实际问题中的相等关系.

活动2跟踪训练

下列方程的解为`=2的是(C)

`=2

`-1=4-2`

(`-1)=2`-2

`-4=5`-2

在2+1=3,4+`=1,y2-2y=3`,`2-2`+1中,一元一次方程有(A)

个个个个

老师要求把一篇有2 000字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出方程的解)

解:设小华要`分钟完成,由题意,得

50`+700=2 000,

`

活动3课堂小结

方程及一元一次方程的定义.

如何列方程,什么是方程的解.

等式的性质

了解等式的两条性质.

会用等式的性质解简单的一元一次方程.

阅读教材P81~82,思考下列问题.

等式的性质有哪几条?用字母怎样表示?字母代表什么?

解方程的依据是什么?

知识探究

如果a=b,那么a±c=b±c(字母a、b、c可以表示具体的数,也可以表示一个式子).

如果a=b,那么

如果a=b(c≠0),那么

自学反馈

已知a=b,请用“=”或“≠”填空:

(1)3a=3b;(2)a4=b4;(3)

利用等式的性质解下列方程:

(1)`+7=26;

(2)- 5`=20;

(3)-2(`+1)

解:(1)`(2)`(3)`[来源:学_科_网]

注意用等式的性质对方程进行逐步变形,最终可变形为“`=a”的形式.

活动1小组讨论

例利用等式的性质解下列方程并检 验:

(1)`-9 =6;

(2)`=10;

(3)3-13`=2;

(4)-2`+1=0;

(5)4(`+1)

解:(1)`(2)`(3)`(4)`(5)`

运用等式的性质解方程不能漏掉某一边或某一项.

活动2跟踪训练

利用等式的性质解下列方程并检验:

(1)`+5=8;[来源:学|科|网Z|`|`|K]

(2)-`-1=0;[来源:学+科+网Z+`+`+K]

(3)-2-14`=2;

(4)6`

解:(1)`(2)`(3)(4)`=13 .

活动3课堂小 结

等式有哪些性质?

在用等式的性质解方程时要注意什么?

会从实际问题中抽象出数学模型,会用一元一次方程解决电话计费等有关方案决策的问题.

阅读教材P104~105探究3的内容,思考题中所提出的问题.

知识探究

方案决策问题解题的基本方法是求得每种方案的结果,再结合结果做出判断.[来源:学科网]

自学反馈

某市乘公交车(非空调)每次需投币元或者购买IC卡,每次刷卡扣款元,但办理IC卡时需付工本费15元.问需乘坐公交车多少次时两种收费方式的收费一 样?当超过这个次数后哪种收费方 式较合算?[来源:Z``]

解:100次,购买IC卡合算.

活动1小组讨论

例(教 材P104探究3)电话计费问题

下表中有两种移动电话计费方式.

月使用

费/元 主叫限定

时间/min 主叫超时

费/(元/min) 被叫

方式一 58 150 免费

方式二 88 350 免费

考虑下列问题:

(1)设一个月 用移动电话主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费;

(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.

活动2跟踪训练

某厂招聘运输工,有两种方法来结算工资,一种是每月基本工资300元,每运1吨货给15元;另一种是没有基本工资,每运1吨货给20元.问每月运多少吨货时两种结算方法给的工资一样多?如果某工人每月可运货70吨,那么用哪种结算方法可多拿工资?

解:60吨,用第二种结算方法可多拿工 资.

活动3课堂小结

电话计费等有关的方案决策问题.

从算式到方程教案(10)

一、教材分析

(一)教材的地位和作用

方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础.方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材.本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭.

(二)教学内容

“从算式到方程”新教材与原教材的显著区别:方程这一部分内容不是按照由定义到解法最后讲应用的纯数学体系编排,而是首先从实际问题出发,通过比较算术方法与方程求解的区别,体会方程的优越性,让学生认识到从算式到方程是数学的一大进步.然后再通过具体实际问题所列方程,介绍方程等概念.新教材的编写更加体现了数学的应用价值.

(三)教学重点难点

由于学生在小学阶段已习惯用算术方法解决实际问题,对列方程不太熟练,为了防止学生仍停留在列算式解题的低层上,所以本节重点确定为:让学生在讨论问题、解决问题的过程中,比较列算式与列方程在分析数量关系上的区别及列方程时相等关系的建立.而本节中学生可能感到困难的仍是实际问题相等关系的建立.

二、目标分析

依据课程标准的要求,确定以下目标:

(一)知识与技能目标

了解方程等基本概念.

会根据具体问题中的数量关系列出方程.

(二)过程与方法目标

经历从具体问题中的数量相等关系列出方程的过程,体会并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想.

(三)情感目标

让学生进一步认识到方程与现实世界的密切关系,感受数学的价值.培养学生获取信息,分析问题,处理问题的能力。

三、教法与学法分析

根据本节内容与现实生活联系较紧密的特点,教学中选取学生熟悉的、感兴趣的背景材料,充分调动学生的学习热情.并恰当设计各种问题,让学生在教师的引导下,通过小组讨论、相互交流、动手操作、自主探索等活动,获得知识,积累经验,体验成功,积极推行自主学习、合作学习、探究学习等新的学习方式,努力完成教师和学生在教与学活动中角色的转变.

四、教学过程分析

教学目标 ①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程

②初步具有解方程中的化归意识;

③培养言必有据的思维能力和良好的思维品质.

教学重点 用等式的性质解方程。

知识难点 需要两次运用等式的性质,并且有一定的思维顺序。

教学过程(师生活动) 设计理念

复习引入 解下列方程:(1)`+; (2)

在学生解答后的讲评中围绕两个问题:

① 每一步的依据分别是什么?

② 求方程的解就是把方程化成什么形式?

这节课继续学习用等式的性质解一元一次方程。由于这一课时也是学习用等式的性质解方程,所以通过复习来引入比较自然。

探究新知 对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?

例1 利用等式的性质解方程:

()`-` (2)

先让学生对第(1)题进行尝试,然后教师进行引导:

① 要把方程`-`转化为`=a的形式,必须去掉方程左边的,怎么去?

② 要把方程-`转化为`=a的形式,必须去掉`前面的“-”号,怎么去?

然后给出解答:

解:两边减,得`

化简,得

-`,、

两边同乘-1,得l

`

小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为`=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.

你能用这种方法解第(2)题吗?

在学生解答后再点评.

解后反思:

①第(2)题能否先在方程的两边同乘“一3”?

②比较这两种方法,你认为哪一种方法更好?为什么?

允许学生在讨论后再回答.

例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布米,儿童服装每套平均用布米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?

在学生弄清题意后,教师再作分析:如果设余下的布可以做`套儿童服装,那么这`套服装就需要布`米,根据题意,你能列出方程吗?

解:设余下的布可以做`套儿童服装,那么这`套服装就需要布米,根据题意,得

80`×+`

化简,得

280+`=355,

两边减280,得

280+`-280=355-280,

化简,得

`=75,

两边同除以,得`

答:用余下的布还可以做50套儿童服装.

解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.

问题:我们如何才能判别求出的答案50是否正确?

在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把`=50代入方程80×+`=355的左边,得80×+×50=280+75=355

方程的左右两边相等,所以`=50是方程的解。

你能检验一下`=-27是不是方程 的解吗? 不同层次的学生经过尝试就会有不同的收获:一部分学生能独立解决,一部分学生虽不能解答,但经过老师的引导后,也能受到启发,这比纯粹的老师讲解更能激发学生的积级性。

这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的“检验”更加自然。

解题的格式现在不一定要学生严格掌握。

课堂练习 ① 教科书第73页练习 第(3)(4)题。

② 小聪带了18元钱到文具店买学习用品,他买了5支单价为元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)

建议:采用小组竞赛的方法进行评议

小结与作业

课堂小结 建议:①先让学生进行归纳、补充。主要围绕以下几个方面:

(1) 这节课学习的内容。

(2) 我有哪些收获?

(3) 我应该注意什么问题?

②教师对学生的学习情况进行评价。

③思考题 用等式的性质求`:-2`=-5`+7 引发竞争意识,提高自我评价和自我表现的机会,以达到激发兴趣,巩固知识的目的。评价包括对学生个人、小组,对学生的学习态度、情感投入及学习的效果方面等。

本课作业 ① 必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:①3+4`=17;②4- =3

② 选做题:教科书第73页第4(3)题,第74页第10题。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的知

识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.本设计从新课的引人、例题的处理(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点.

2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师“灌输”的“容

器”,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识.新

课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式.本设计在这方面也有较好的体现.

3、为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线.对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的又一特点.本设计充分体现了这一特点.

从算式到方程教案(11)

【学习目标】

1、理解什么是一元一次方程。

2、理 解什么是方程的解及解方程,学会检验一个数值是不是方程的 解的方法。

【重点难点】能验证一个数是否是一个方程 的解。

【导学指导】

一、温故知新

1:前面学 过有关方程的一些 知识,同学们能说出什么是方程吗?

答: 叫做方程。

2: 判断下列是不是 方程,是打“√”,不是打“×”:

① ;( ) ②3+4=7;( )

③ ;( )④ ;( )

⑤ ;( ) ⑥ ;( )

二、自主探究

一元一次方程的概念

观察下面方程的特点

(1)4 =24;(2)1700+150=2450

(3)`-(`)=80

小结:象上面方程,它们都含有 个未知数(元),未知数的次数都是 ,这样的方程叫做一元一次方程。

(即方程的一边或两边含有未知数)

方程的解

如何求出使方程左右两边相等的未知数的值?

如方程 =4中, =?

方程 中的 呢?

请用小学所学过的逆运算尝试解决上面的问题。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

例 检验2和-3是否为方程 的解。

解:当`=2时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=2 方程的解(填是或不是)

当`= 时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=3 方程的解(填是或不是)

【课堂练习】

判断下列是不是一元一次方程,是打“√”,不是打“×”:

① =4;( ) ② ;( )

③ ; ( ) ④ ; ( )

⑤ ; ( ) ⑥3+4 =7 ;( )

检验3和-1是否为方程 的解。

`=1是下列方程( )的解:

(A) , ( B) ,

(C) ), ( D)

4 、已知方程 是关于`的一元一次方程,则a=。

【要点归纳】:

这节课我们学习了什么内容?

什么是方程的解?如何检验一个数是否是方程的解?

【拓展训练】:

检验2和 是否为方程 的解。

老师要求把一篇有20XX字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出 方程的解)

【总结反思】:

从算式到方程教案(12)

【教学目标】:

知识与技能:

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;

2、了解什么是方程,什么是一元一次方程及什么是方程的解。

过程与方法:

1、会将实际问题抽象为数学问题,通过列方程解决问题;

2、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法。

3、能结合具体例子认识一元一次方程的含义,体会设未知数列方程的过程,会用方程表示简单实际问题的相等关系。

情感与态度:

体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。

【教材分析】:

1、地位与作用:本节的内容是七年级数学上册第三章《一元一次方程》的第一节《从算式到方程》第一、二课时,首先通过一个具体的问题情境引入,使学生感受到用算术方法解决问题存在一定困难,从而积极探求新方法,体会数学的价值。然后,通过列代数式,找相等关系引出方程、一元一次方程等概念。本节内容是小学与初中知识的衔接点,通过方程的学习对于提高学生观察问题、研究问题、解决问题的能力,都是十分有利的。

2、教学重点: 建立一元一次方程的概念。

3、教学难点: 根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义。

【教学过程】:

问题与情境 教师活动 学生活动 一、创设情境,展示问题:

问题1: 章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远?

地名

时间

王家庄

10:00

青山

13:00

秀水

15:00

教师展示问题,要求用算术解法,让学生充分发表意见。

说明问题1中算术解法不容易,得出进一步学习的必要性。学生独立思考,小组交流,代表发言,解释说明。

问题1的算术解法:(50+70)÷2=60(千米/时)

605-70=230(千米)

二、寻找关系,列出方程

1、对于问题1,如果设王家庄到翠湖的路程是x千米,则:

路程

时间

速度

王家庄-青山

王家庄-秀水

根据汽车匀速前进,可知各路段汽车速度相等,列方程。

2、比一比:列算式与列方程有什么不同?哪一个更简便?

3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。

找出相等关系,列出方程。

学生思考回答:

1、王家庄-青山(X—50)千米,王家庄-秀水(X+70)千米。2、汽车以每小时(X-50)÷3千米的速度从王家庄到青山;以每小时(X+70)÷5千米的速度从王家庄到秀水。三、定义方程,建立模型

1、定义:(板书)含有未知数的等式叫做方程。

练习一:判断下列式子是不是方程,是的打“√”,不是的打“x ”.

(1)1+2=3 ( ) (4) ( )

(2) 1+2x=4( ) (5) x+y=2 ( )

(3) x+1-3 ( ) (6) x2-1=0 ( )

练习二:根据下列问题,设未知数并列出方程。

(1) 小颖种了一株树苗,开始时树苗高为40厘米,栽种后树苗每周长高约15厘米,大约几周后树苗长高到1米。

解:如果设x周后树苗长高到1米,那么依题意得到方程:

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的修检时间2450小时?

解:经过x月这台计算机的使用时间达到规定的修检时间2450小时,那么依题意得到方程:

(3)用一根长24cm的铁丝围成一个长方形,使它长是宽的倍,长方形的长、宽各应是多少?

解:如果设这个长方形的宽为X米,那么长为_______米.由此依题意得到方程:________________。

(4)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?

解:设这个学校的学生为x,那么女生数为 ,男生数为 .

由此依题意得到方程:________________。

[议一议]:上面的四个方程有什么共同点?

2、定义:只含有一个未知数(元X),未知数的指数是1次,这样的方程叫做一元一次方程。

练习三:判断下列方程哪些是一元一次方程?

(1) (2)

(3) (4)

(5)

3、方程的解:做一做 填下表:

从算式到方程教案(13)

教学目标

知识与技能

(1)通过观察,归纳一元一次方程的概念.

(2)根据方程解的概念,会估算出简单的一元一次方程的解.

过程与方法.

通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.

情感态度与价值观

鼓励学生进行观察思考,发展合作交流的意识和能力.

重、难点与关键

重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,列出简单的一元一次方程,并会估计方程的解.

难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解.

关键:找出能表示实际问题的相等关系.

教具准备:投影仪.

教学过程

一、复习提问

在小学里,我们已学习了像2x=50,3x+1=4等简单方程,那么什么叫方程呢?什么叫方程的解和解方程呢?

答:含有未知数的等式叫方程;能使方程等号两边相等的未知数的值叫方程的解,求方程解的过程叫解方程.

方程是应用广泛的数学工具,把问题中未知数与已知数的联系用等式形式表示出来.在研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数.

怎样根据问题中的数量关系列出方程?怎样解方程?这是本章研究的问题.

通过本章中丰富多彩的问题,你将进一步感受到方程的作用,并学习利用一地一次方 程解决问题的方法.

二、新授

怎样列方程?

让学生观察章前图表,根据图表中给出的信息,回答以下问题.

(1)根据图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间表,你知道,汽车从王家庄行驶到青山用了多少时间?青山到秀水呢?

(2)青山与翠湖、秀水到翠湖的距离分别是多少?

(3)本问题要求什么?

(4)你会用算术方法解决这个实际问题呢?不妨试试列算式.

(5)如果设王家庄到翠湖的路程为x(千米),你能列出方程吗?

解:(1)汽车从王 家庄行驶到青山用了3小时,青山到秀水用了2小时.

(2)青山与翠湖的距离为50 千米,秀水与翠湖的距离为70千米.

(3)王家庄到翠湖的距离是多少千米?

(4)分析:要求王家庄到翠湖的距离,只要求出王家庄到青山的距离,而王家庄到青山的时间为3小时,所以必需求汽车的速度.

如何求汽车的速度呢?

这里青山到秀水的时间为2小时,路程为(50+70)千米,因此可求的汽车的平均速度为(50+70)÷2=60(千米/时)

王家庄到青山的路程为:60×3=180(千米)

所以王家庄到翠湖的路程为:180+50=230(千米)

列综合算式为: ×3+50

(5)分析:先画出示意图,示意图往往有助于分析问题.

从上图中可以用含x的式子表示关于路程的数量:

王家庄距青山(x-50)千米,王家庄距秀水(x+70)千米.

从章前图表中可以得出关于时间的数量:

从王家庄到青山行车3小时,从王家庄到秀水行车5小时.

由路程数量和行车时间的数量,可以得到行车速度的表达式.

汽车从王家庄开往青山时的速度为 千米/时,汽车从王家庄开往秀水的速度为 千米/时.

要列出方程,必需找出“相等关系”,题目中还有哪些相等关系吗?

根据汽车是匀速行驶的,可知各段路程的车速相等.

于是列出方程:

=

以后我们将学习如何解这个方程,求出未知数x的值,从而得出王家庄到翠湖的路程.

思考:对于以上的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

根据汽车匀速行驶,可知各段路程的车速相等.

所以还可以列方程:

= 或 =

(前者是汽车从王家庄到青山与从青山到秀水,这两段路程的车速相等,后者是汽车从王家庄到翠湖与从青山到秀水,这两段路程的车速相等)

比较用算术方法和列方程方法解应用题,用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,有了这个未知数,问题中的已知量与未知量之间的关系就很容易用含有这个未知数的式子表示,再根据“相等关系”列出方程.

有了方程后人们解决许多问题就更方便了,通过今后的学习,你会逐步认识:从算式到方程是数学的进步.

列方程时,要先设字母表示未知数,通常用x、y、z等字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式即方程.

例1:根据下列问题,设未知数并列出方程.

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?

分析:设正方形的边长为x(cm),那么周长为4x(cm),依题意,得



从算式到方程教案(14)

教学目标:

通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.

初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.

培养学生获取信息、分析问题、处理问题的能力.

教学重难点: 从实际问题中寻找相等关系.

教学过程:

一、情境引入

提出课本P78的问题,可用多媒体演示题目描述的行驶情境.

理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?

能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.

提出问题,如果用字母x表示A、B两地的路程,根据题意会得到一个什么样的式子?

二、学习新知

引导学生把题中的数量用表格形式反映题意:

路程(km) 速度(km/h) 时间(h) 卡车 x 60 客车 x 70

学生回顾方程的概念,探讨、列出方程,并说出列得方程的依据.

讨论列出方程表示的意义,并对比算术方法,体会列方程解决问题与列算式解决问题的优越性.

反思:这个问题中除了A、B两地的路程是一个未知量,还有没有其它的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.

将题中的已知量和未知量用表格列出:

路程(km) 速度(km/h) 时间(h) 卡车 60 y 客车 70 y-1

探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.

总结以上列出两个含不同未知数x、y的方程的方法:①以路程为未知数,则根据两车行驶时间的关系列方程.②以行驶时间为未知数,则从两车行驶路程的关系列方程.

比较列算式和列方程两种方法的特点:阅读课本

举一反三:分别列算式和设未知数列方程解决下列问题:

(1)某数与它的的和是8,求这个数;

(2)班上有女生32人,比男生多,求男生人数;

(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?

三、初步应用

例1:课本P79例

例2(补充):根据下列条件,列出关于x的方程:

(1)x与18的和等于54;

(2)27与x的差的一半等于x的4倍.

列出方程后教师说明:“4x”表示4与x的积,当乘数中有字母时,通常省略乘号“×”,并把数字乘数写在字母乘数的前面.

练习(补充)

(1)列式表示:

① 比a小9的数; ② x的2倍与3的和;

③ 5与y的差的一半; ④ a与b的7倍的和.

(2)根据下列条件,列出关于x的方程:

①12与x的差等于x的2倍;

②x的三分之一与5的和等于

四、课时小结

本节课我们学了什么知识?

你有什么收获?

五、课堂作业

小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入.

第2课时一元一次方程

教学目标:

理解一元一次方程、方程的解等概念.

掌握检验某个值是不是方程的解的方法.

培养学生根据问题寻找相等关系、根据相等关系列出方程的能力.

体验用估算方法寻求方程的解的过程,培养学生求实的态度.

教学重点:寻找相等关系,列出方程.

教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.

教学过程:

一、情境引入

问题:小雨、小思的年龄和是小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?

如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?(25-x,2x-8)

由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8,这样就得到了一个方程.

二、自主尝试

尝试:让学生尝试解答课本P79的例

交流:

在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.

教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.

讨论:

问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?

问题2:在第(3)题中,你还能设其它的未知数为x吗?

建立概念

(1)概念的建立:

在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.

“一元”:一个未知数;“一次”:未知数的指数是一次.

判断下列方程是不是一元一次方程:

①23-x=-7;②2a-b=3;

从算式到方程教案(15)

教学

目标 1、通过处理实 际问题,让学生体验从算术方法到代数方法是一种进步。

2、初 步学会如何寻 找问题中的相等关系,列出方程,了解方程的概念。

3、培养学生获取信息,分析问题,处理问题的能力。

教学过程 一、情景引入:

教师提出教科书第79页的问题,同时出现下图:

问题1:从上图中你能获得哪些信息?

问题3:能否用方程的知识来解决这个问题呢 ?如果设王家庄到翠湖的路程为x千米,那么王家庄距 青山 千米,王家庄距秀水 千米.

二.新课讲解

问题1:题目中的“汽车匀速行驶”是什么意思?

问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

问题3:根据车速相等,你能列出方程吗?

教师引导学生设 未知数,并用含未知数的字母表示有关的数量

教师引导学生寻找相等关 系,列出方程.

教师根据学生的回答情况进行分析,如:

依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程 :

依据“王家庄至青山路段的车速=青山至 秀水路段的车速”

可列方程:

对于上面的问题,你还能列出其他方程吗?

如果能,你依据的是哪个相等关系?

如果直接设元,还可列方程:

如果设王家庄到青山的路程为x千米,那么可以列方程:

依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:

,再列出方程 =60

三.练习巩固

1、例题P/80

2、练习(补充):

从算式到方程教案(16)

【教学习目标】

一、知识与技能

1、通过处理 实际问题,让学生体验从算术方法到代数方法是一种进步。

2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。

3、培养学生获取信息,分析问题,处理问题的能力。

二、过程与方法

通过实际问题,感受数学与生活的联系。

三、情感态度与价值观

培养学生热爱数学热爱生活的乐观人生态度。

【教学方法】

探索式教学法

教师准备教学用课件。

【教学过程】

一、新课引入

教师提出教科书第79页的问题,同时出现下图:

问题2:你会用算术方法求出王家庄到翠湖的距离吗?

问题3:能否用方程的知识来解决这个问题呢?

可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)

当学生列出不同算式时,应让他们说明每个式子的含义)

教师可以在学生回答的 基础上做回顾小结:

1、问题涉及的三个基本物理量及其关系;

2、从知的信息中可以求出汽车的速度;

3、从路程的角度可以列出不同的算式 :

如果设王家庄到翠湖的路程为x千米,那么王家庄距青山 千米,王家庄距秀水 千米.

问题1:题目中的“汽车匀速行驶”是什么意思?

问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

问题3:根据车速相等,你能列出方程吗?

教师引导学生设未知数,并用含未知数的字母表示有关的数量

教师引导学生寻找相等关系,列出方程.

教师根据学生的回答情况进行分析,如:

依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

依据“王家庄至青山路段的车速=青山至秀水路段的车速”

可列方程:

给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

含有未知数的等式叫方程.

归纳列方程解决实际问题的两个步骤:

初一数学《从算式到方程》教案范文相关

从算式到方程教案(17)

一 、教学目标

(一)基础知识目标:

1.理解方程的概念,掌握如何判断方程。

2.理解用字母表示数的好处。

(二)能力目标

体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。

(三)情感目标

增强用数学的意识,激发学习数学的热情。

二、教学重点

知道什么是方程、一元一次方程,找相等关系列方程。

三、教学难点

如何找相等关系列方程

四、教学过程

(一)创设情景,引入新课

由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题.

(二)提出问题

章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的`路程有多远?

你会用算术方法解决这个实际问题么?不妨试一下。

如果设王家庄到翠湖的路程为x千米,你能列出方程吗?

根据题意画出示意图。

由图可以用含x的式子表示关于路程的数量。

王家庄距青山 千米,王家庄距秀水 千米。

由时间表可以得出关于路程的数量。

从王家庄到青山行车 小时,王家庄到秀水 小时。

汽车匀速行驶,各路段车速相等,于是列出方程:

各表示的意义是什么?

以后我们将学习如何解出x,从而得到结果。

例1 某数的3倍减2等于某数与4的和,求某数.

例2 环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?

五、课堂小结

用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是根据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决很多问题就方便了,通过今后的学习,你会逐步认识,从算式到方程是数学的进步。

六、作业布置

习题3.1 第1,2两题。

985大学 211大学 全国院校对比 专升本 美国留学 留求艺网

温馨提示:
本文【从算式到方程教案(精品17篇)】由作者教培参考提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号 美国留学 留求艺