培训啦 考试资料 > 教案

函数概念教案(热门5篇)

教培参考

教育培训行业知识型媒体

发布时间: 2024年11月22日 22:29

函数概念教案(1)

一、教材分析及处理

函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。

对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。

教学重点是函数的概念,难点是对函数概念的本质的理解。

学生现状

学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。

二、教学三维目标分析

1、知识与技能(重点和难点)

(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。

(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。

(3)、掌握定义域的表示法,如区间形式等。

(4)、了解映射的概念。

2、过程与方法

函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:

(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。

(2)、面向全体学生,根据课本大纲要求授课。

(3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。

3、情感态度与价值观

(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。

(2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。

三、教学器材

多媒体ppt课件

四、教学过程

教学内容教师活动学生活动设计意图

《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活

知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫

思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接

新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题

对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识

函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法

注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点

习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系

映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫

小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点

五、教学评价

为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。

在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。

虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。

函数概念教案(2)

一、教材分析

1、 教材的地位和作用:

函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

2、 教学目标及确立的依据:

教学目标:

(1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

(2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

(3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

教学目标确立的依据:

函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。

3、教学重点难点及确立的依据:

教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

教学难点:映射的概念,函数近代概念,及函数符号的理解。

重点难点确立的依据:

映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

二、教材的处理:

将映射的定义及类比手法的运用作为本课突破难点的关键。函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

三、教学方法和学法

教学方法:讲授为主,自主预习为辅。

依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。

学法:四、教学程序

一、课程导入

通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

二. 新课讲授:

(1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。

(2)巩固练习课本52页第八题。

此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。

并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

再以让判断的方式给出以下关于函数近代定义的注意事项:2. 函数是非空数集到非空数集的映射。

3. f表示对应关系,在不同的函数中f的具体含义不一样。

4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

5. 集合a中的数的任意性,集合b中数的唯一性。

66. “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。

三.讲解例题

例1.问y=1(x∈a)是不是函数?

解:y=1可以化为y=0*x+1

画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

[注]:引导从集合,映射的观点认识函数的定义。

四.课时小结:

1. 映射的定义。

2. 函数的近代定义。

3. 函数的三要素及符号的正确理解和应用。

4. 函数近代定义的五大注意点。

五.课后作业及板书设计

书本p51 习题2.1的1、2写在书上3、4、5上交。

预习函数三要素的定义域,并能求简单函数的定义域。

函数(一)

一、映射:

2.函数近代定义: 例题练习

二、函数的定义 [注]1—5

1.函数传统定义

三、作业:

函数概念教案(3)

一、学习要求

①了解映射的概念,理解函数的概念;

②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法;

③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;

④理解分数指数幂的`概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;

⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题.

二、两点解读

重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题.

难点:①抽象函数性质的研究;②二次方程根的分布.

三、课前训练

1.函数 的定义域是 ( D )

(A) (B) (C) (D)

2.函数 的反函数为 ( B )

(A) (B)

(C) (D)

3.设 则 .

4.设 ,函数 是增函数,则不等式 的解集为 (2,3)

四、典型例题

例1设 ,则 的定义域为 ( )

(A) (B)

(C) (D)

解:∵在 中,由 ,得 , ∴。

∴在 中, .

故选B

例2已知 是 上的减函数,那么a的取值范围是 ( )

(A) (B) (C) (D)

解:∵ 是 上的减函数,当 时, ,∴ ;又当 时, ,∴ ,∴ ,且 ,解得: .∴综上, ,故选C

例3函数 对于任意实数 满足条件 ,若 ,则

解:∵函数 对于任意实数 满足条件。

∴ ,即 的周期为4。

例4设 的反函数为 ,若 ×

则 2

解:

∴m+n=3,f(m+n)=log3(3+6)=log39=2

(另解∵ ,

例5已知 是关于 的方程 的两个实根,则实数 为何值时, 大于3且 小于3?

解:令 ,则方程

的两个实根可以看成是抛物线 与 轴的两个交点(如图所示)。

故有: ,所以:。

解之得:

例6已知函数 有如下性质:如果常数 ,那么该函数在 上是减函数,在 上是增函数.如果函数 的值域为 ,求b的值;

解:函数 的最小值是 ,则 =6,∴。

函数概念教案(4)

高一数学教案:变量与函数的概念

学习目标:

(1)理解函数的概念

(2)会用集合与对应语言来刻画函数。

(3)了解构成函数的要素。

重点:

函数概念的理解

难点:

函数符号y=f(x)的理解

知识梳理:

自学课本P29—P31,填充以下空格。

1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作。

2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为。

3、因为函数的值域被 完全确定,所以确定一个函数只需要

4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:

① ;②。

5、设a,b是两个实数,且a

(1)满足不等式 的实数x的集合叫做闭区间,记作。

(2)满足不等式a

(3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;

分别满足x≥a,x>a,x≤a,x

其中实数a,b表示区间的两端点。

完成课本P33,练习A 1、2;练习B 1、2、3。

例题解析

题型一:函数的概念

例1:下图中可表示函数y=f(x)的图像的只可能是( )

练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。

题型二:相同函数的判断问题

例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与

④ 与 其中表示同一函数的是( )

A. ② ③ B. ② ④ C. ① ④ D. ④

练习:已知下列四组函数,表示同一函数的是( )

A. 和 B. 和

C. 和 D. 和

题型三:函数的定义域和值域问题

例3:求函数f(x)= 的.定义域

练习:课本P33练习A组 4.

例4:求函数 , ,在0,1,2处的函数值和值域。

当堂检测

1、下列各组函数中,表示同一个函数的是( A )

A、 B、

C、 D、

2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C )

A、5 B、-5 C、6 D、-6

3、给出下列四个命题:

① 函数就是两个数集之间的对应关系;

② 若函数的定义域只含有一个元素,则值域也只含有一个元素;

③ 因为 的函数值不随 的变化而变化,所以 不是函数;

④ 定义域和对应关系确定后,函数的值域也就确定了.

其中正确的有( B )

A. 1 个 B. 2 个 C. 3个 D. 4 个

4、下列函数完全相同的是 ( D )

A. ,B. ,

C. ,D. ,

5、在下列四个图形中,不能表示函数的图象的是 ( B )

6、设 ,则 等于 ( D )

A. B. C. 1 D.0

7、已知函数 ,求 的值.( )

函数概念教案(5)

函数概念教案

作为一名老师,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么应当如何写教案呢?以下是小编收集整理的函数概念教案,欢迎阅读与收藏。

各位领导老师:

大家好!

今天我说课的内容是函数的近代定义也就是函数的第一课时内容。

一、教材分析

1、教材的地位和作用:

函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,所以函数的第一课时非常的重要。

2、教学目标及确立的依据:

教学目标:

(1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

(2)能力训练目标:通过教学培养学生的抽象概括能力、逻辑思维能力。

(3)德育渗透目标:使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

教学目标确立的依据:

函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学生学好其他的数学内容。而掌握好函数的概念是学好函数的基石。

3、教学重点难点及确立的依据:

教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

教学难点:映射的概念,函数近代概念,及函数符号的理解。

重点难点确立的依据:

映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

二、教材的处理:

将映射的定义及类比手法的运用作为本课突破难点的关键。函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使学生真正对函数的概念有很准确的认识。

三、教学方法和学法

教学方法:讲授为主,学生自主预习为辅。

依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为学生能学好后面的知识打下坚实的基础。

学法:四、教学程序

一、课程导入

通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

二.新课讲授:

(1)接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生总结归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:A→B,及原像和像的定义。强调指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的对应法则f。进一步引导学生总结判断一个从A到B的对应是否为映射的关键是看A中的任意一个元素通过对应法则f在B中是否有唯一确定的元素与之对应。

(2)巩固练习课本52页第八题。

此练习能让学生更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

例1.给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导学生发现它们是特殊的映射进而给出函数的近代定义(设A、B是两个非空集合,如果按照某种对应法则f,使得A中的任何一个元素在集合B中都有唯一的元素与之对应则这样的对应叫做集合A到集合B的映射,它包括非空集合A和B以及从A到B的对应法则f),并说明把函f:A→B记为y=f(x),其中自变量x的取值范围A叫做函数的`定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{f(x):x∈A}叫做函数的值域。

并把函数的近代定义与映射定义比较使学生认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

再以让学生判断的方式给出以下关于函数近代定义的注意事项:

2.函数是非空数集到非空数集的映射。

3.f表示对应关系,在不同的函数中f的具体含义不一样。

4.f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

5.集合A中的数的任意性,集合B中数的唯一性。

6.“f:A→B”表示一个函数有三要素:法则f(是核心),定义域A(要优先),值域C(上函数值的集合且C∈B)。

三.讲解例题

例1.问y=1(x∈A)是不是函数?

解:y=1可以化为y=0+1

画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

[注]:引导学生从集合,映射的观点认识函数的定义。

四.课时小结:

1.映射的定义。

2.函数的近代定义。

3.函数的三要素及符号的正确理解和应用。

4.函数近代定义的五大注意点。

五.课后作业及板书设计

书本P51习题2.1的1、2写在书上3、4、5上交。

预习函数三要素的定义域,并能求简单函数的定义域。

985大学 211大学 全国院校对比 专升本 美国留学 留求艺网

温馨提示:
本文【函数概念教案(热门5篇)】由作者教培参考提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 培训啦 All Rights Reserved 版权所有. 湘ICP备2022011548号 美国留学 留求艺